ALGEBRA

Quadratic Equation and Its Solution

An algebraic equation of second order (highest power of the variable is equal to 2) is called a quadratic equation. Equation $ax^2 + bx + c = 0$ is the general quadratic equation. The solution was given by Indian mathematician shri Dhara Charya.

The general solution (Roots) of the above quadratic equation or value of variable x is

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \Rightarrow \qquad x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{and} \quad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

 $x_1 & x_2$ are the roots of the equation

Sum of the roots
$$x_1 + x_2 = \frac{-b}{a} = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2}$$

Product of the roots
$$x_1 x_2 = \frac{c}{a} = \frac{\text{coefficient of constant term}}{\text{coefficient of } x^2}$$

Arithmetic Progression (A.P.)

In this sequence every number is obtained by adding a certain constant value (Positive or Negative) in the preceding number, called common difference.

In general, arithmetic progression can be written as, a,(a + d), (a + 2d)

where a is the value of 1st term, d is common difference

• value of
$$n^{th}$$
 term of A.P. is $t_n = a + (n-1) d$

• The sum of n terms of A.P. is
$$S_n = \frac{n}{2} \{2a + (n-1)d\}$$

Geometric Progression

In this sequence, every number can be obtained by multiplying its preceding number by a fixed number called common ratio

 $t_n = ar^{n-1}$

• Sum of n terms is given by
$$S_n = \frac{a(1-r^n)}{1-r}$$

• For sum of infinite terms
$$(r < 1)$$
 $S_{\infty} = \frac{a}{1 - r}$

• For sum of infinite terms (r < 1)

value of nth term of GP is

Binomial Theorem For x << 1

•
$$(1 + x)^n = 1 + nx$$
 where n may be a fraction

$$\bullet \qquad (1-x)^n = 1 - nx$$

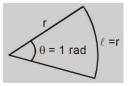
$$\bullet \qquad (1-x)^{-n}=1+nx$$

$$\bullet \qquad (1+x)^{-n}=1-nx$$

TRIGONOMETRY

Angle

One radian is the angle subtended at the centre of a circle by an arc of the circle, whose length is equal to the radius of the circle.



$$1 \text{ rad} = \frac{180^{\circ}}{\pi} \approx 57^{\circ} \, 17' \, 45'' \approx 57.3^{\circ}$$

$$1^{\circ} = \frac{\pi}{180} \text{ radian }, \ 1' = \left(\frac{1}{60}\right)^{\circ}, \ 1'' = \left(\frac{1}{60}\right)'$$

The T-ratios of a few standard angles ranging from 0° to 180°

Angle (θ)	0°	30°	45°	60°	90°	120°	135°	150°	180°
sin θ	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

FACTS:

$\sin (90^{\circ} + \theta) = \cos \theta$ $\cos (90^{\circ} + \theta) = -\sin \theta$ $\tan (90^{\circ} + \theta) = -\cot \theta$	$\sin (180^{\circ} - \theta) = \sin \theta$ $\cos (180^{\circ} - \theta) = -\cos \theta$ $\tan (180^{\circ} - \theta) = -\tan \theta$	$\sin(-\theta) = -\sin\theta$ $\cos(-\theta) = \cos\theta$ $\tan(-\theta) = -\tan\theta$	$\sin (90^{\circ} - \theta) = \cos \theta$ $\cos (90^{\circ} - \theta) = \sin \theta$ $\tan (90^{\circ} - \theta) = \cot \theta$
$\sin(180^{\circ} + \theta) = -\sin\theta$ $\cos(180^{\circ} + \theta) = -\cos\theta$ $\tan(180^{\circ} + \theta) = \tan\theta$	$\sin(270^{\circ} - \theta) = -\cos\theta$ $\cos(270^{\circ} - \theta) = -\sin\theta$ $\tan(270^{\circ} - \theta) = \cot\theta$	$\sin (270^{\circ} + \theta) = -\cos \theta$ $\cos (270^{\circ} + \theta) = \sin \theta$ $\tan (270^{\circ} + \theta) = -\cot \theta$	$\sin (360^{\circ} - \theta) = -\sin \theta$ $\cos (360^{\circ} - \theta) = \cos \theta$ $\tan (360^{\circ} - \theta) = -\tan \theta$

CALCULUS

Differential Calculus

• If
$$c = constant$$
,

$$\bullet$$
 y = c u, where c is a constant and u is a function of x,

•
$$y = u \pm v \pm w$$
, where u, v and w are function of x,

•
$$y = u v$$
 where u and v are functions of x ,

$$\bullet \qquad y = \frac{u}{v} \,, \text{ where } u \text{ and } v \text{ are functions of } x,$$

•
$$y = x^n$$
, n real number,

$$\frac{d}{dx}(c) = 0$$

$$\frac{dy}{dx} = \frac{d}{dx} (cu) = c \frac{du}{dx}$$

$$\frac{dy}{dx} \ = \ \frac{d}{dx} \ (\ u \pm v \pm w) = \frac{du}{dx} \pm \frac{dv}{dx} \pm \frac{dw}{dx}$$

$$\frac{dy}{dx} = \frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{d}{dx}\frac{u}{v} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$\frac{dy}{dx} = \frac{d}{dx}(x^n) = nx^{n-1}$$

Formulae for differential coefficients of trigonometric, logarithmic and exponential functions

1.
$$\frac{d}{dx} (\sin x) = \cos x$$

5.
$$\frac{d}{dx} (\sec x) = \sec x \tan x$$

$$2. \qquad \frac{d}{dx}(\cos x) = -\sin x$$

6.
$$\frac{d}{dx}$$
 (cosec x) = - cosec x cot x

3.
$$\frac{d}{dx} (\tan x) = \sec^2 x$$

7.
$$\frac{d}{dx} (\log_e x) = \frac{1}{x}$$

4.
$$\frac{d}{dx} (\cot x) = -\csc^2 x$$

8.
$$\frac{d}{dx}(e^x) = e^x$$

Integration

Few basic formulae of integration

Following are a few basic formulae of integration:

$$1. \int x^n dx = \frac{x^{n+1}}{n+1} + c, \qquad \text{(not valid for } n \neq -1\text{)} \qquad 2. \int \sin x dx = -\cos x + c$$

$$2. \int \sin x dx = -\cos x + \cos x$$

3.
$$\int \cos x dx = \sin x + c$$

4.
$$\int \frac{1}{x} dx = \log_e x + c$$
 (c is constant of integration)

$$5. \int e^x dx = e^x + c$$

6.
$$\int \frac{1}{ax+b} dx = \frac{1}{a} \log_{e}(ax+b) + c$$

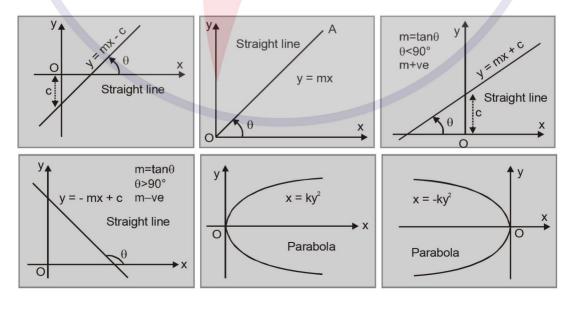
Definite Integrals

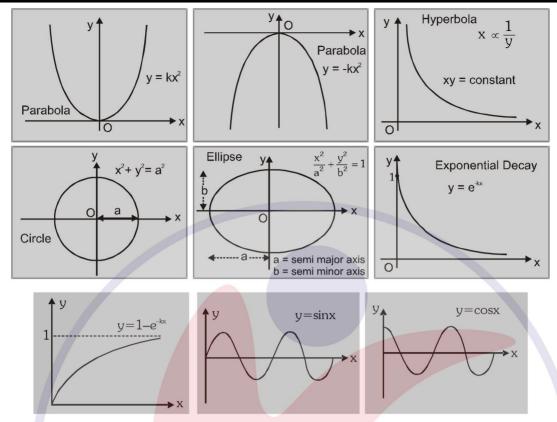
When a function is integrated between a lower limit and an upper limit, it is called a definite integral.

$$\int_{a}^{b} f'(x) dx = |f(x)|_{a}^{b} = f(b) - f(a)$$

Without any limit integration is called indefinite integral

Graphs: Some Standard graphs and their equations





Maxima and Minima (Use of Differential Calculus)

For maxima or minima, consider a function

$$y = f(x),$$

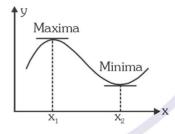
Step - 1 Differentiate given function y with respect to x and equate it with zero. $\frac{dy}{dx} = 0$

Step - 2 Again differentiate $\frac{dy}{dx}$ with respect to x and verify whether it has a positive value or negative value.

At maxima
$$\frac{d^2y}{dx^2} < 0$$

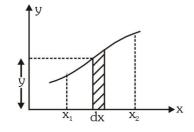
At minima
$$\frac{d^2y}{dx^2} > 0$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$
 is called second derivative



Area of graph (Use of Integral Calculus)

Let y = f(x) is a function, then area of graph with x axis is given by



$$A = \int_{x_1}^{x_2} y.dx$$

VECTORS

Scalar Quantities: A physical quantity which can be described completely by its magnitude only and does not require a direction is called a scalar.

Ex: Distance, mass, time, speed, density, volume, temperature, current etc.

Vector Quantities: A physical quantity which requires magnitude and a particular direction, when it is expressed. i.e. Displacement, velocity, acceleration, force etc.

Representation of vector

A vector is represented by a line headed with an arrow.

Direction of \vec{A} , $\hat{A} = \frac{\vec{A}}{|\vec{A}|}$ Tip of the arrow

TYPES OF VECTOR

Parallel Vectors :-

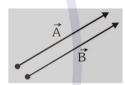
Those vectors which have same direction are called parallel vectors.

Angle between two parallel vectors is always 0°

Equal Vectors

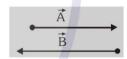
Vectors which have equal magnitude and same direction are called equal vectors.

$$\vec{A} = \vec{B}$$



Anti-parallel Vectors :

Those vectors which have opposite direction are called anti-parallel vector. Angle between two anti-parallel vectors is always 180°



Negative (or Opposite) Vectors

Vectors which have equal magnitude but opposite direction are called negative vectors of each other.

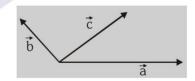
 \overrightarrow{AB} and \overrightarrow{BA} are negative vectors

$$\overrightarrow{AB} = -\overrightarrow{BA}$$

• Co-initial vector

Co-initial vectors are those vectors which have the same initial point.

In figure \vec{a}, \vec{b} and \vec{c} are co-initial vectors.



Collinear Vectors :

The vectors lying in the same line are known as collinear vectors. Angle between collinear vectors is either 0° or 180° .

Example.

(i) \leftarrow \leftarrow $(\theta = 0^{\circ})$

(ii)
$$\longrightarrow$$
 ($\theta = 0^{\circ}$)

(iii) \leftarrow \rightarrow $(\theta = 180^{\circ})$

(iv)
$$\longrightarrow$$
 $(\theta = 180^{\circ})$