INTRODUCTION

The s-block elements of the Periodic Table are those in which the last electron enters the outermost s-orbital. As the s-orbital can accommodate only two electrons, two groups (1 & 2) belong to the s-block of the Periodic Table.

IA - Alkali metals Li Na K Rb Cs

IIA - Alkaline earth metals Be Mg Ca Sr Ba

PHYSICAL PROPERTIES OF S-BLOCK ELEMENTS

The atomic, physical and chemical properties of alkali metals are discussed below.

PHYSICAL STATE

ALKALI METAL

- One electron in outermost shell & **General electronic** configuration is ns¹.
- Francium is radioactive element.
- All are silvery white
- Light soft, malleable and ductile metals with metallic lustre.
- Alkali metals are paramagnetic, while their ions are diamagnetic and colourless.

ALKALINE EARTH METAL

- Two electrons in outer most shell & **General configuration** is ns^2 .
- Radium is radioactive element.
- All are greyish white.
- These metals are harder than alkali metals.
 - These are diamagnetic and colourless in form of ions or in metal states.

ATOMIC SIZE

- Biggest in their respective period (except noble gas element)
- Size increases from Li to Fr due to addition of an extra shell.

in atomic and gaseous state

Li < Na < K < Rb < Cs < Fr in aquatic state

$$\stackrel{+1}{\text{Li}} > \stackrel{+1}{\text{Na}} > \stackrel{+}{\text{K}} > \stackrel{+}{\text{Rb}} > \stackrel{+1}{\text{Cs}}$$

- Smaller than IA group elements, since extra charge on nucleus attracts the electron cloud more.
- Size increases gradually from Be to Ra

In s-block elements

Be is the smallest, Cs is the biggest

in aq. state

$$Mg^{+2} > Ca^{+2} > Sr^{+2} > Ra^{+2}$$

SOFTNESS

- Alkali metals are soft because of -
 - (a) Large atomic size
 - (b) BCC crystal structure (HCP in Li)
 - (c) Loose packing (68% packing efficiency)
 - (d) Weak metallic bond
 - Cs is the softest metal in s-block

- These metals are slightly harder than IA group because of -
 - (a) Smaller atomic size
 - (b) FCC, HCP crystal structures
 - (c) Packing capacity 74%
 - (d) Stronger metallic bond due to presence of two electrons in valence shell.
- Be is the hardest metal in s-block.

MELTING POINT AND BOILING POINT

- Decreasing order of melting point and boiling point is
 Li > Na > K > Rb > Cs
- Metallic bond is stronger than IA group elements due to smaller atomic size and two electrons in valence shell hence melting point and boiling point are higher.
- Decreasing order of melting point and boiling point is

Melting & Boiling point ∝ Strength of metallic bond

NEET

IONISATION POTENTIAL (I.P.)

- Decreasing order of ionisation potential -
 - Li > Na > K > Rb > Cs
- $I.P_{II} > I.P_{II}$

- Decreasing order of ionisation potential— Be > Mg > Ca > Sr > Ba
 - $I.P_{I} > I.P_{II}$

OXIDATION STATE

- The alkali metals shows only +1 oxidation state. (Ist and 2nd ionisation potential difference > 16eV)
- Alkaline earth metal shows +2. Oxidation state (Ist and 2^{nd} ionisation potential difference < 11eV)

ELECTRO POSITIVE CHARACTER OR METALLIC CHARACTER

- Electropositivity $\propto \frac{1}{\text{Ionisation Potential}}$ Electropositivity in both groups 1 down the group
- Their atomic size is smaller than IA group so these are lesser electro positive than IA group. Electropositivity increases from Be to Ba

DENSITY

- $\bullet \qquad (D = M/V)$
- Li < K < Na < Rb < Cs

- Ca < Mg < Be < Sr < Ba
- K < Na < Ca < Mg

FLAME TEST

Li-Crimson red Na-Golden yellow K-Violet Rb-Red violet Cs-Blue

Be and Mg atoms, due to small size, bind their electrons more strongly, so are not excited to higher level, hence no flame test.

Ca-Brick red

Sr-dark red

Ba-apple green

or Crimson red

PHOTO ELECTRIC EFFECT

- Due to very low ionisation potential their valence shell electrons gets excited even by absorbing visible light. That's why Cs is used in photo cells.
- These elements do not show this property as their atomic size is small hence ionisation potential is higher than IA group.

HYDRATION ENERGY (HEAT OF HYDRATION)

- Alkali metals salts are generally soluble in water due to hydration of cations by water molecules.
- Smaller the cation, greater is the degree of its hydration.
- Li⁺
- Na+
- K⁺
- Rb+
 - + Cs+
- * Degree of hydration decreasing
- * Hydration energy decreasing
- * Hydrated ion size decreasing
- * Ionic conductance increasing

- Due to smaller ionic size and higher charge density their hydration energy is high.
- Its decreasing order is

$$Be^{+2} > Mg^{+2} > Ca^{+2} > Sr^{+2} > Ba^{+2}$$

Hydration energy $\propto 1/cation$ size

REDUCING PROPERTY

- Since alkali metals have high standard oxidation potential, so these are strongest reductants.
- Reducing property increases down the group in gaseous or molten state

• But in aqueous solution order is -

$$Li > K \sim Rb > Cs > Na$$

- Less reductant than alkali metals
- Order of reducing property in aqueous and gaseous medium is

REACTIVITY - INCREASES IN GROUP

Reactivity \(\pi \) 1/Ionisation potential

order of reactivity - Li < Na < K < Rb < Cs

- Less reactive than alkali metals.
- Order of reactivity Be < Mg < Ca < Sr < Ba

REACTION WITH OXYGEN

Li Na Oxide Oxide & peroxide

(Li₂O) (Na₂O₂) (KO₂, RbO₂, CsO₂)

Their stability order is -

Normal oxide > Peroxide > Superoxide (paramagnetic) (diamagnetic) (paramagnetic) (paramagnetic)

Peroxides are coloured due to Lattice defect.

BeO MgO CaO SrO BaO Basic strength increases

REACTION WITH HYDROGEN

- Alkali metals combine with H_o forming ionic hydrides $2M + H_2 \rightarrow 2MH$
- LiH is covalent hydride while others are ionic.
- Hydrides of alkali metals are attacked by water to give H_o NaH, KH, RbH,

Thermal stability decreases, Basic nature increases

- Except Be all the alkaline metals forms MH, type hydrides, (MgH₂, CaH₂, SrH₂, BaH₂) on heating directly with H_o
- BeH, and MgH, are covalent, others are ionic.
- Be and Mg have tendency of polymerisation. (BeH₂), (MgH₂), Polymeric hydride

REACTION WITH WATER

Monoxides gives strong alkaline solution with water

 $M_{\circ}O + H_{\circ}O \rightarrow 2MOH$ LiOH < NaOH < KOH < KbOH < CsOH Order of reactivity Ba > Sr > Ca > Mg > Be

from Be(OH), to Ba(OH), basic nature and stability increases.

CARBONATES

- All the alkali metals forms M₂CO₃ type carbonates.
- Except Li₂CO₃, all the carbonates are stable towards heat

$$\text{Li}_2\text{CO}_3 \xrightarrow{\Delta} \text{Li}_2\text{O} + \text{CO}_2 \text{Na}_2 \text{CO}_3 \xrightarrow{\Delta} x$$

Thermal stability of carbonates $\propto 1/\phi$ (Ionic potential) Order of thermal stability is - $Cs_2CO_3 > Rb_2CO_3 > K_2CO_3 > Na_2CO_3 > Li_2CO_3$

- All the alkaline metals forms MCO₃ type carbonates.
- All the carbonates decompose on heating.

$$BeCO_3 \xrightarrow{\Delta} BeO + CO_2$$

Order of decreasing thermal stability - $BaCO_3 > SrCO_3 > CaCO_3 > MgCO_3 > BeCO_3$

NITRATES

Stability increases from LiNO₃ to CsNO₃. LiNO₃ decompoes into Lithium oxide & NO, on heating.

$$4\text{LiNO}_3 \xrightarrow{\Delta} 2\text{Li}_2\text{O} + 4\text{NO}_2 + \text{O}_2$$

Other nitrates, on heating, give nitrite and oxygen.

$$2\text{MNO}_3 \xrightarrow{\quad \Delta\quad} 2\text{MNO}_2 + \text{O}_2$$
 Nitrite

- Stability increases from Be(NO₃)₂ to Ba(NO₃)₂ but these are less stable than IA group, due to smaller atomic size.
- All alkaline metals nitrates on heating gives oxides

and $NO_2 + O_2$ $M(NO_3)_2 \xrightarrow{\Delta} Metal Oxides + NO_2 + O_2$

Be(NO₃)₂ forms a layer of BeO on its surface so reaction stops.

NITRIDES

 \bullet Only Li reacts directly with $N_{\rm 2}$ to form nitride which gives ${\rm NH_3}$ on hydrolysis.

6Li +
$$N_2 \rightarrow 2Li_3N$$

 $Li_3N + 3H_2O \rightarrow 3LiOH + NH_3^{\uparrow}$

Only Be and Mg burns in N_2 to give M_3N_2 (Be $_3N_2$, Mg $_3N_2$) $Be_3N_2 + 6H_2O \rightarrow 3Be(OH)_2 + 2NH_3$ $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$

SULPHATES

- All alkali metal sulphates are ionic. Ionic properties increases from Li to Cs.
- Li₂SO₄ Least soluble in water.
- These sulphates on burning with C forms sulphides

$$M_2SO_4 + 4C \rightarrow M_2S + 4CO$$

• Except lithium, sulphates of IA group reacts with sulphates of trivalent metals like Fe⁺³, Cr⁺³, Al⁺³ etc. to form double salts called alum.

 Ionic nature of alkaline metal sulphat is increases from Be to Ba

$$BeSO_4 < MgSO_4 < CaSO_4 < SrSO_4 < BaSO_4$$

Order of solubility—

$$BeSO_4 > MgSO_4 > CaSO_4 > SrSO_4 > BaSO_4$$

Order of thermal stability-

$$BeSO_4 < MgSO_4 < CaSO_4 < SrSO_4 < BaSO_4$$

Ionic nature increases, Thermal stability increases

SOLUBILITY IN LIQUID AMMONIA

- \bullet All the alkali metals dissolves in $\mathrm{NH_3}$ (liq.) and produces blue solution.
- This blue solution conducts electricity and possesses strong reducing power, due to the presence of ammoniated electrons.

$$Na_{(s)} + (x+y) NH_3 \rightarrow [Na(NH_3)_x]^+ + [e(NH_3)_y]^-$$
ammoniated
electron

- Dark blue colour of solution becomes fade if it allowed to stand for a long time, it is because of metal amide formation.
- This dilute solution is paramagnetic in nature.
- $2\text{Li} + \text{NH}_3 \rightarrow \text{Li}_2\text{NH} \text{ (Lithimide)} + \text{H}_2$ $2\text{Na} + 2\text{NH}_3 \rightarrow 2\text{NaNH}_2 + \text{H}_2 \uparrow$ (Sodamide)

- Only Ca, Sr and Ba gives blue solution due to ammoniated electron.
- Be and Mg are small in size and have high ionisation potential so do not dissolves in liquid NH_o.
- Blue colour of solution disappears on addition of ammonium salt, due to NH₃ formation.

$$\mathrm{NH_4^+}$$
 + $\mathrm{NH_2^-}$ \rightarrow $\mathrm{2NH_3}$

On increasing metal ion concentration solution converts into bronze colour due to cluster formation of metal ions.

Sodium Hydroxide (NaOH), Caustic Soda

(a) Manufacture:

Castner - Kellner Cell: (Hg - Cathode Process)

Electrolite (Brine)

NaCl
$$\Longrightarrow$$
 Na⁺ + Cl⁻

On electrolysis-

At Cathode (Hg)

$$Na^+ + e^- \rightarrow Na$$
.

$$Na^+ + e^- \rightarrow Na$$
. ; $Na + Hg \rightarrow Na$. Hg (amalgum)

At anode (Graphite)

$$2Cl^{-} \rightarrow Cl_{2}(g) + 2e^{-}$$

$$2Cl^{-} \rightarrow Cl_2(g) + 2e^{-}$$
 ; $2Na.Hg + 2H_2O \rightarrow 2NaOH + H_2 + 2Hg$

Sodium Bicarbonate or Baking soda (NaHCO₃)

(a) Preparation: Solvay process (Commercial Scale)

 $CaCO_3 \longrightarrow CaO + CO_2$ (In brine saturated with NH₃, CO₂ is passed)

$$2NH_4Cl + CaO \longrightarrow CaCl_2 + 2NH_3 + H_2O$$
 (By-products)

(b) Properties:

Hydrolysis

Effect of heat (temp. > 100°C)

$$2NaHCO_3 \longrightarrow Na_2CO_3 + H_2O + CO_2$$

(Process occurs during preparation of cake)

Reaction with acids – gives CO_o

$$NaHCO_3 + HCl \longrightarrow NaCl + H_2O + CO_2 \uparrow$$

Reaction with base

Sodium Carbonate or Washing Soda (Na, CO, 10H, O)

- (a) Occurrence: Na CO Soda ash.
- (b) Manufacture: Solvay process
 - (i) Concentrated aqueous solution of NaCl is saturated with NH₂.
 - (ii) Current of CO₂ passed through the solution.
 - (iii) NaHCO₃ precipitated -

$$2NaHCO_3 \xrightarrow{\quad \quad \quad } Na_2CO_3 + CO_2 + H_2O$$

- Potassium bicarbonate (KHCO₃) cannot be prepared by solvay process as it is highly soluble in water.
- (c) Properties:
 - (i) Efflorescence:

Na₂CO₃.10H₂O when exposed to air it gives out nine out of ten H₂O molecules.

$$Na_2CO_3.10H_2O \longrightarrow Na_2CO_3.H_2O + 9H_2O$$

(Monohydrate)

This process is called efflorescence. Hence washing soda losses weight on exposure to air.

Hydrolysis: Aqueous solution of Na₂CO₃ is alkaline in nature due to anionic hydrolysis. (ii)

S-BLOCK ELEMENTS NEET

- (c) Uses
 - (i) For making fusion mixture $(Na_2CO_3 + K_2CO_3)$
 - (ii) In the manufacturing of glass, caustic soda, soap powders etc.
 - (iii) In laundries and softening of water.

Plaster of Paris $(CaSO_4)_2$. H_2O or $CaSO_4$.1/2 H_2O

(a) **Preparation:** It obtained when gypsum is heated at 120°C

$$2(CaSO_4.2H_2O) \longrightarrow 2CaSO_4.H_2O + 3H_2O$$
 Gypsum

(b) Properties:

- (i) It is a white powder.
- (ii) It has the property of setting to a hard mass when a paste with water is allowed to stand aside for sometime.
- (iii) When it heated at 200°C, anhydrous CaSO₄ is formed K/as dead burnt P.O.P.
- (c) Uses

$$CaSO_4. \frac{1}{2}H_2O \xrightarrow[]{200^{\circ}C} \xrightarrow[\text{(very high T)}]{} CaSO_4 + H_2O \xrightarrow[\text{(very high T)}]{} + H_2O \xrightarrow[\text{(very high T)}]{} CaO + SO_3$$