Differential Calculus - 1

CONTINUITY

3.1

Introduction

Consider the functions : 7 (x) = [x], g (x) =x%, x € R. The graphs
of f(x) and g (x) in the neighbourhood of argument x = 2 are shown
in fig. 1 & 2 respectively. There is a break in the graph of /'(x) at x
= 2, whereas this is not so in that of g (x). We express this difference
by saying that the function f'(x) is discontinuous at x = 2 and the function
g (x) is continuous at x = 2. As we approach 2 from either left or
right, the values of g (x) approach its value at x = 2. But this does
not happen for f(x), and this brings about the break in its graph at x
=2

(8]
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3.2

JEE MAIN
OR mathematically,
lim f(x)# lim f(x) and Iim g(x)= lim g(x)=g(2)
x—>2" x> OF x—>2" x—2*F

We are thus led to the following definitions :

(@) Continuityatx=a
A function y = f (x) is continuous at x = a, if its limit at x = a exists

and is equal to f'(a) i.e.

-
Left hand limit = Right hand limit = £ (@) : _
lim f(x)= lim f(x)=/f(a)
x—=>a x—>at
Fig. 2

(b) Discontinuityatx=a

We say that f'(x) is discontinuous at x = a, if  (x) is not continuous at x = a.

OR

in other words, if any one or more of the conditions for the function £ (x) to be continuous fails to be
satisfied, f (x) is said to be discontinuous at x = a. Geometrically speaking, there must be a break in
the graph of f (x) at x = a.

Theorems on Continuity

1.  Letf(x) and g (x) be the continuous functions x = a. Then the following functions are continuous

at x = a.
@ f()xgk (b) kf(x), kg ((x) [where £ is real]
: d A% ided 0
© 0 g @  g(r)> Provided g (@) # 0.
2. f(x)=ayta; x+a, P S +a, x" is the nth degree polynomial function. This

function is continuous at all values of x.

3. y=sinx,y=cosx are continuous for all x.
y =log, x is continuous for all x > 0.
y=a"is continuous for all x.

4. Ify=f(x) is continuous for x € [a, b] and N is any number between f (a) and f (), then there
is at least one number ¢ between a and b such that f (c) = N.

5. Ify=f(x)is continuous for x € [a, b] and f (a) and f'(b) are of opposite signs, then there exists
atleast one solution of the equation /' (x) = 0 in the open interval (a, b).
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6. The Sandwich Theorem :
Suppose that f(x) < g (x) < h (x)

for all x # ¢ in some interval about ¢, and that /' (x) and / (x) approach the same limit

L as x approaches cie. lim f(x)= lim h(x)=L.Then lim g(x)=L.
xX—>c X —>cC X —»C

7.  Ifthe function f'is continuous at x = a and g is continuous at x = f (a) then composite function
g {f (x)} is continuous at x = a.

lllustrating the Concepts :

el/x_l
(i) Discuss the continuity of f(x)=4/* 11 ~ at the point x = 0.
0 ;o x=0
—1/h
e -1 —50-1
LHL = lim 0—h)= lim = =
h—>0f( ) hs0eVh 11 —>0+1
Mg
RHL = lim f(0+h): lim ———
h—0 N
Divide N and D by ¢!’ to get :
i
: A 1-(—>0)
RHL = lim = =1
el/h

= LH.L.#RHL. = f(x)is discontinuous at x = 0.

(i) Discuss the continuity of the function : g (x) = [x] + [— x] at integral values of x.

Let us simplify the definition of the function :

(D Ifxis an integer : - [x]=[n+f]=n
] =xand =] = o and [-x] = [ —f]=[(-n = 1) + (1= )]
= g =x x=0 —ao

(II) If x is not integer : [because 0 < f<1=0(1—f)<1]
Letx=n+f Hence g (x) = [x] + [~ x]

[where n is an integer and fe (0, 1)] =Ht+-r-1)=-1
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So we get :

0, if x is an integer RHL.= lim g(x)=-1

X—>a

g(X)Z{

Let us discuss the continuity of g (x) at a
ointx=a where a € . .
B . [ /] but g (a) = 0 because a is an integer.
LHL. = . _1)rr611_ g)=-1 Hence g (x) has a removable discontinuity
at integral values of x.

—1,1f x is not an integer

M The values a and b so that the function :

X+a~2sinx ; OSx<§
f(x)=+ 2xcotx+b : %s x gg is continuous x € [0, m] is :
acos2x —bsinx §<xﬁn
A) G’ 2 (B) 3 D ©) ’ 2 (D) one of these

SOLUTION : (A)

Atx=m/4 : Left hand limit= lim f(x)= lim (x+ a\/zsinx) = g +a

Y Y
xX—>— xX—>—
4

Right hand limit = lim f(x)= lim (2x cotx +b)= g +b
ot +

T
xX—>— xX——
4 4

f[Ejzz(Ej cot=+b="+h
4 4 4 2

for continuity, these three must be equal

T T T
—+a=—+b a—-b=— i
= 7 5 = 4 ()

Atx=7/2: Left hand limit = lim (2xcotx+b)=0+b=b

T
X —
2
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CONTINUITY
. , T
Right hand limit = lim (a cos2x —bsinx)=—a —b f(aj =0+b
+
x>
2
for continuity, b =—a — b = at+2b=0 1))
o . T i
Solving (1) and (i1) for a and b, we get : BT
lllustration - 32 a
(1+|sinx|)|s"”x| =70
Let f(x) = b =10
(tanij
e\ fan3x 0=t~ kg
6

The value a and b such that f (x) is continuous at x = 0 is :

8 -8
A) g=8b=¢ (B a=§,b=e

SOLUTION : (C)
Left hand limit at x =0

a
LHL = lim f(x)= lim {(l+lsinx|)|smx|}
x—>0 x—>0"

= LHL= lim f(O0—-h)
h—0

a
Isin 7|
= LHL= lim |(1+]sin#]|) =e
h—0

© a=3.6=¢" (D)

e None of these

Right hand limit x =0

tan 8 x
RHL.= lim f(x)= lim %3
x—>0+ x—0
— RHL.= lim f(0+h)
h—0
tan8h
— RHL.= lim 3"
h—0
§[tan8h 3h j
—RHL.= lim >\ 3 tan3h)_ 83
h—0

for continuity,

LHL.=RH.L.=7(0)

a — 62/3 8/3

= e =bh = az%,b:e
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Illustration - 33

1- cos4
—C(;S al ;o x<0
x
Let fx)= a ;o x=0
Jx
—_— ; x>0
J16++/x —4

The value of a, if possible, so that the function is continuous at x = 0 is :
(A 6 (B) 8 (C) -6 (D) None of these
SOLUTION : (B)
It is given that

- 2
l1-cos4x 0 —  LHL= {im 1—cos4h _ lim 2sin”2h _ g
f(X) = a 3 X = 0
Jx
—_— ; x>0
16 +/x — 4 Right hand limit at x = 0
; : RHL.= lim f(0+h)
1S continuous at x = 0. h—0
So we can take : ) JZ
= RHL = lim ————
h—0 _
lim f(0)=f©O)= lim £(x) V16 — 4
x>0 x— 0" Rationalise denominator to get :
Left hand limit at x =0,
RHL. = lim £(\/16 + i +4)=8
1—cos4x h—0~h

LHL= Im f(x)= Ilm 5
x—>0" x>0 X For function f'(x) to be continuous at x =0,
y LHL.=RHL.= f(0
Now, LH.L.= lim f(0-h) /)
k20 - 8=8=a

= a=28
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lllustration - 34 i o =
If f (x)= L sn31x B COSXY s continuous at x = 0, find the values of A, B
X
and f (0) are :
A)  A=2,B =0, f(0)=-1 (B) A4=-2,B =0, f(0)=-1
©) A=0,B =-2, f(0)=1 (D) None of these

SOLUTION : (B)

As f(x) is continuous at x =0, f(o) = Bm P2 2x+ ASH;HBCOSX
x>0 X"

Using expansions of sin2x, sinx and cosx, we get :

—@4- - x—@-i- - —£+ﬁ+
R

x—>0 3

ERE
0)= lim
f( ) x—>0 x3
For above limit to be finite (exist), coefficient of x°, x! and x? should be 0 in numerator i.e.,
B=0,4+2=0 and ﬁzo = A=-2 and B=0
2
3+
On replacing, we get : f(0)= lim = 3
x—0 X

f(0)=-1
So,weget: A=—-2, B=0, f(0)=-1.

Note : We can also solve this question using L’Hospital rule.

2n
: . X . . :
The point where f(x) = lim (sm 7) is discontinuous are :
n— o

(A) x=nnel (B) x =2n,nel
© x =2n+1l),nel (D)  None of these
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SOLUTION : (C)

0 ; |x|<I Le. x is an odd integer
Since lim x> = , — x=02n+1) [where n € I]
n —> oo 1 s | X | =]
)2 Check continuity at x = (2n + 1) :
= lim |sin— )
fx) n—)oo[ 2} LHL. = Im f(x)=0 ...
x—>2n+1
. TX
0 5 |sn=r-|=l and f(2n+1)=1
N rx LHL. #f@2n+1),
1 ; |sim—|=1
2 = f(x) is discontinuous at x =2n + 1
Thus £ (x) is continuous for all x, except for [i.e. at odd integers]

. TX Hence £ (x) is discontinuous at x = (2n + 1).
those values of x for which Sm? =1 A ot ( )
= sin X 4

2
= x=C2n+1)n

UORICHOREETY  The number of points where f (x) is discontinuous in [0, 2] where

[cos T x] x=l

f(x):{[x—2]|2x—3| ;
@a 1 B 2 © 3 D) 4
SOLUTION : (C)

First of all find critical points where 7 (x) may be discontinuous.

Consider x € [0, 1] : f(x) [cos m x]

b

i where [ | : represents the greatest integer function is :
x>

x 1s discontinuous where x € [. = cosTx e I

In [0, 1], cos mx is an integer at x = 0, x:% and x = 1.

1 1 ; .
= x=0,x 25 and x = 1 are critical points «o (i)

Considerx € (1, 2] :
J () =[x—2] [2x - 3|

In xe(1,2),[x-2]=-1 and forx =2 [x—-2]=0

>
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Also | 2x — 3 | — x:i
2
3 " . -
= x= 5 and x = 2 are critical points 1))
.. . .. .. . 1 3
Combining (1) and (ii), critical points are 0, > 1, > 2.
On dividing f(x) about the 5 critical points, we get :
1 ; x=0 cos (m0) =1
1
0 ; 0<x£5 0<cosmx<l = [cosmx]=0
-1 ; l<xsl v —1<cosmx<0 = [cosmx]=-1
_ 2
f ()= s
-13-2x) ; l<x£§ v [2x-3|=3-2xand[x-2]=-1
—1(Zx —3) : %<x<2 B 4P —3|=2x—-3and[x—2]=-1
0 ; 2 [x—-2]=0

Checking continuity at x =0 :

RHL.= lim (0)=0 and /(0) =1
x—> 0"

= f(x) is discontinuous at x = 0.
Checking continuity at x = 1/2 :
LHL. = lim_ f(x)=0
x——
2
RHL. = lim f(x)=-1
+

X ——
2

. . 1
f(x) 1s discontinuous at x = h

Checking continuity at x = 1 :

LHL. = lim f(x)=-1

x—>1

[As R.H.L. # £ (0)]

[AsLHL.#RHL]
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RHL.= lim f(x)= lim (2x-3)=-1land f(1)=-1
+ +

x—1 x—1

f(x) is continuous at x = 1. [AsLHL. =RHL.=f(1)]
Checking continuity at x = 3/2 :
LHL = lim (2x-3)=0

P
2

RHL.= lim (3-2x)=0 and f(éj: 0
+

X
2

f(x) is continuous at x = 3/2. As LHL.=R

Checking continuity at x = 2 :

LHL = lim (3-2x)=-1 and f(2)=0
x—>2"
f (%) is discontinuous at x = 2. [As LH.L#f(2)]
3.3 Continuity in an interval "
(i) A function f'(x) is said to be continuous in the interval (a, ) ¢
if f (x) is continuous at each and every point € (a, b) ,
For any ¢ € (a, b), f (x) 1s continuous if E !.}r‘{__t;-'} E
lim f(x)= lim f(x)=7(c) ! ! ! -X
x—>c x>t O a c b
(i) A function f (x) is said to be continuous in the closed Y

mteval [a, b] if it is continuous at every point in the
interval (a, b) (see above section ) and the continuity at o
the end points is checked according to the following rule Continuity

from Continuity
Continuity at x = a right from left

|

|

:
|

/ (x) is continuous at x = g if : i
|

|

If f(a)= lim f(x)= lim f(a+h) =RHL. ; !

h—>0

X—>a

8] a b

= a finite quantity (Fig.)

L.H.L. should not be evaluated to check continuity x = a
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Continuity x = b

f(x) is continuous at x = b

If f(b) = lim f(x) = lim f(b — h) = L.H.L. = a finite quantity.
h—0

x—>b

R.H.L. should not be evaluated to check continuity x = b.

3.4 Discontinuous Functions
A function f'is said to be discontinuous at point a of its domain D if it is not continuous there. The
point ‘a’ is then called a point of discontinuity of the function. The discontinuity may arise due to any
of the following situations :
(i) L.H.L. or RH.L. or both do not exist. at x =a
1.e. they either approach to ‘0’ or — o or oscillate between finite or infinite limits.
(i) L.H.L.as well as R.H.L. exist, but are unequal i.e. LH.L. # R H.L. at x =a.
(iii) L.H.L. as well as R.H.L.. both exist and are equal but there values is not equal to f (a)
te. LHL =RHL.#f(a)atx=a
3.5 Types of Discontinuities
Following are the types of discontinuities
Discontinuity atx=a
Removable discontinuity Discontinuity of first kind or Discontinuity of second kind
Irremovable discontinuity

(i)

(ii)

Removal discontinuity :
A function f (x) is said to have a Removable discontinuity at a point x = a,
if the limit of /' (x) at x = a exists but is not equal to f (a),

ie.  lim f(x)= lim f(x) =/ (a)

X —> qg— X =>a

lim f (x): lim f(x) = f (a)

X —>a— X —>a+

(m) (m) Q)

Discontinuity of the first kind :

The function f (x) is said to have a discontinuity of first kind (or an simple discontinuity) at a
pointx =a
if both L.H.L. and R.H.L. exist but are not equal
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The discontinuity of the first kind is also known as jump discontinuity
where jump =| RH.L. - L H.L|. at x =a.

ie. lim f(x);t lim f(x)

X —>ad— X —>da+

Note : Discontinuity in this case is non-removable.

(iii) Discontinuity of the second-kind :
A function y = f'(x) is said to have a discontinuity of second kind at a point x = a
if either or both of the limits

lim f(x) and lim f(x) does not exist i.e.,
¥ = = x—>a+

if either or both of the limit

lim f(x) and lim f(x) is infinite or as oscillatary
X —>a-— x—>a+

The discontinuity of second kind is also known as essential discontinity.

lllustrating the Concepts :

(i) Iff (x) = %,xi 0, discuss the continuity of f (x) at x = 0.
1+e’*

Atx =0
LHL = lim f(x) = lim f(0-h)=tim —— -1 1 _
x>0 h—0 h—>01+4e V" 14e7® 140
. . . 1 1 1
and RHL.= Ilim f(x) = lim f(0+h): lim = =—=0
x> 0F h—0 h—>01+e" 14et®

Hence L. H.L. # RH.L.
= f(x) has a jump discontinuity at x = 0.
(ii)  Discuss the continuity of the function f (x) = sin (log, | x| ) at x = 0.
LHL = lim f(x) = lim f(O - h)
x—>0" h—0

:hh—>m0 sin (loge |0 —h |)

= lim sin (logeh)zsin (log,0) =sin(—o) =—sinoo
h—0

= oscillating between — 1 and 1.
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RHL. = lim f(x)= lim f(0+ h)
x — 0+ h—0

zhli_r)n0 sin (loge |O +h ’)

= lim sin (logeh) = sin (log, 0) =sin(—o0) =—sin ©
h—>0

= oscilating between — 1 and 1.
Therefore L.H.L. and R.H.L. are undefined.
Hence f(x) has a essential discontinuity.

(iii) A function f (x) satisfies the following property :
Sx+y) =10

Show that the function is continuous for all values of x if it is continuous at x = 1.

As the function is continuous at x = 1, we have

lim f(x)= lim f(x)=s(Q1)

x—>1 x—1
= lim f(1—n)= lim f(1+h)=7(1) [using /' (x +y) =f(x) f (V)]
h—0 h—0
we get,
= lim f(1) f(=h)= lim f(1) f(h) = f(1)
h—0 h—0
=5 lim f(-h)= lim f(h)=1 e (@)
h—0 h—0
Now consider some arbitrary point x = a.

Left hand limit = lim f(a—h)= lim f(a) f(=h)
h—>0 h—>0
= f(a) hliino f(=h)=f(a) [using (1)]
Right hand limit = lim f(a+ h)= lim f(a) f(h)
h—>0 h—>0

= f(a) lim f(h)=f(a) [using (1)]

Hence at any arbitrary point (x = a),
LHL =RHL.=f(a)

= function is continuous for all values of x.
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Illustration - 37

15 x
If g(x) = f (f (x) where f(X)={3_
discontinuity of g(x) in [0, 3] is :
A 2 B) 3 © 4
SOLUTION : (A)
B I d+x ; 8=
g(X)—f(f(X))—{fG_x)  2ex<3
f(1+x) 0<x<l1
=q9f(0+x) ; 1<x<2
fB-x) ; 2<x<3
now x € [0, 1] = (1+x)ell, 2]
x e (1,2] = (1+x) e (23]
x e (2, 3] =3 3-3)e€][0,1)
Hence
f(I+x) for 0<x<1 = 1<x+1<2
gx)=1f(Q+x) for 1<x<2 = 2<x+1<3
f(B-x) for 2<x<3 = 0<3-x<lI

Now if (1 +x) € [1, 2] then
fA+x)=1+(1+x)=2+x . (1)
[from the original definition of / (x)]
Similarly if (1 +x) € (2, 3) then

fA+x)=3-(N+x)=2-x ...(ii)

: <2
’ then the number of point o
<x<3 /P /

(D)

If (3 —x) € (0, 1) then
fB-x)=1+@3-x)=4—«x
Using (1), (i1) and (iil), we get :

. .. (iii)

2+x 0<x<l1
g (e Xl l<x<2
4—-x ; 2<x<3

Now we will check the continuity of g (x) at
x=1, 2.
Atx =1

LHL = lm g(x)= lim (2+x)=3

x—>1 x—>1

RHL. = Iim g(x)= lim (2-x)=1
x—>1F x—1

[As LH.L. # R H.L., g (x) is discontinuous at
x=1]
Atx =2

LHL = Ilm g(x)= lim (2-x)=0

x—>2" x—>2"
RHL = Im g(x)= lim (4-x)=2
x—2F x> 2"

[As LH.L. # R H.L., g (x) 1s discontinuous at
= Z]
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Illustration - 38

n
The natural number a for which Z f(a+k)=16 (2" —1) where the function f satisfies

k=1
the relation f (x +y) = f(x) f (v) for all natural numbers x, y and further f (1) =2 is :
(A) 2 (B) 3 © 1 D) None of these
SOLUTION : (B)
Since the function f satisfies the relation Using equation (1), the given expression reduces
FEt ) =f@F0) o
It must be an exponential function. Z 2wtk _q6 @ -
Let the base of this exponential function be a. k=1
Thus f(x) =a* n
It is given that /(1) = 2. So we can make - kzzll 272 =16 i)
f(Hh=a'=2= a=2
Hence, the function is £ (x) = 2* ()] =N i 2k o1602" -1
[Alternatively, we have] k=1
fO=fx-1+H=7Fx-1)7(1) =27 (2+4+8+16+...+2")=16(2" - 1)
—fOe—2+ 1) (1) )
=/ =) [f(MF =.. = [f D] =27 = 2 {2(2—__1)}16(2” -

where x is an integer

= 20tl_16=> 2a+1=2%

> at+tl=4 = a=3
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DIFFERENTIABILITY

4.1

Definition
The derivative of function y = f'(x) is defined as the instantaneous rate of change of y {or f(x)} with
respect to the change in the independent variable x.

. . changein
Derivative = lim #
h— 0 change in x

As x changes from x to x + A4, y changes from f (x) to f (x + /). Hence

Derivative = Q =f"(x)= lim f+h) - f(x)
dx h—0 h
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4.2 Existence of derivative (Differentiability) at a point

We have already defined deriavative of y with respect to x as the instantaneous rate of change of y
with respect to x.
Consider an arbitary point x = a.

(a) Ifx changes froma to a + h, derivative at x =a 1is :

Right Hand Derivative = R f' (a) = lim Jlas hz —f(a)
h—0

(b) Ifx changes from ato a — A, derivative at x =a is :

Left Hand Derivative = L f'(a) = lim 24=M=J(a)
h—0 —h

We say that derivative at x = a exists or the function is differentiable at x = a if both the left hand
derivative and the right hand derivative are finite and equal.

= R f"(a)=Lf' (a)is the condition for differentiability at x = a.

=

lim L@th—f@) _ i fla=m-f(a)

h—0 h h—0 —

4.3 Another Expression for f'(a)
We can also find derivative of /' (x) at x = a with the use of the following formula :
x—0 X—a

4.4 Geometrical Meaning of Derivative
4.4.1 Geometrical meaning of Right hand derivative

Let P (a, f(a)) and O (a + h, f (a + h)) be two points very near to each other on the curve y = f (x).

Using slope of a line formula, we get Y
£}
fla+h)—f(a)
1 ==
Slope of PO @+h)—a

Now apply lim on both sides to get :
h—0

lim (slopeof chotd PQ)= lim 4 E+HH=F@
h—0 h—0 h

Right hand derivative
= R[f'(a)]= lim (slope of chord PQ)
h—0
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Ash—> 0,0 —> Poncurve,a+h —>aonx-axis and f(a + ) — f(a) on y-axis.
When £ is infinitely small, chord PQ almost becomes tangent drawn at P towards right i.e.
R’ [f(a)] = lim (slope of chord PQ)
h—0

= slope of tangent drawn at P towards right.

Hence geometrical significence of right hand derivative is that it represents slope of tangent drawn at
P towards right.

4.4.2 Geometrical meaning of Left hand derivative

Let P (a, f(a)) and QO (a — h, f (a — h)) be two points very near to each other on the curve y = f(x).

_h)—
Using slope of a line formula, we get : Slope of PQ = J (? })l) /(@)
o B —da
. . . . fla=h)- f(a)
Now apply 1im on both sides to get : lim (slope of chord PQ)= lim
w apply g Jim (slop Q)= lim —

Left hand derivative = L[ f'(a)]= hlimo (slope of chord PQ)
%

Ash —> 0,0 — Poncurve,a — h —> a on x-axis and f (a — h) — f (a) on y-axis. When / is
infinitely small, chord PQ almost becomes tangent drawn at P towards left i.e.

L'[f(a)]= hhino (slope of chord PQ)

= slope of tangent drawn at P towards left.

Hence geometrical significence of left hand derivative is that it represents slope of tangent drawn at P
towards left.

4.4.3 Geometrical meaning of existence of derivative
We know derivative exists at x = a, if L [f' (a)] =R [f" (a)]
=  Slope of tangent drawn at P towards left = slope of tangent drawn at P towards right
=  Same tangent line towards left and right
=  Smooth curve around x = a

Hence if f (x) is differentiable or derivative at x = a exists, then at x = a we can drawn only one
tangent towards left and right.

1.e. curve would be smooth in the neighbourhood of a.
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4.5

4.6

Existence of derivative (Differentiability) on an interval
Let y = f(x) is a function which is defiend in the closed interval [a, b].

(a) If f(x) is a differentiable at every point on the open interval (a, ), then f (x) is said to be
differentiable on (a, b).

(b) Iff(x) is differentiable on (a, ) and f'(a") and f'(b ") exists finitely, then f (x) is said to be
differentiable on closed interval [a, b].
Results

(a) Iff(x) is defferentiable at x = a, the it must be continuous at x = a or if /(x) 1s differentiable
on the interval (a, b), then it must be continuus for all x lying in this interval.

(b) The converse of above result is not true i.e. if function is continuous at x = g, then it may or may
not be differentiable at x = a. OR if function is continuous on the interval (a, ) then it may or
may not differentiable for all x in that interval.

(¢) IfRf' (a) and Lf'(a) both exist finitely (both may or may not be equal) then £ (x) is continuous
atx = a.

(d) Ifa function is differentiable, its graph must be smooth i.e. there should be no break or corner.

lllustrating the Concepts :

1-x2 ; x<-1
(1) Discuss the differentiability f(x) at x =1, if f(x)= > T
2x+2 ; x>-1
F(=1) = 1@CHF = 0
Right hand derivative at x =—1 is
Rfr(_l): lim f(_l+h)_f(_l)
h—0 h
_ i 2270 2h
h—0 h h—0 h
. fEI--f (D
' (—1) = lim
O h—0 —h
C(—1-h)? - 2
i ECIEAT 0 A2k 2y =2
h—0 —h h—>0 —h h—0

Since If' (—1) = Rf' (-1) =2.

= The function is differentiable at x = —1.
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(ii) Show that the functin f (x) = | x* — 4 | is not differentiable at x = 2.

x* -4 ; x<-=2
Flx)= 4 - x? - —2<xad
x> -4 x>2

= f2) =2*-4=0

. 2-h)- f(2 _(2—m?—
Lf,(2):hmf( )=/@) _ . 4-@2-h)"-0
h—0 —h h—0 —h
72
— Jigy BH By ) =,
h—>0 —h h—0
. 2+h)-f(2 2 41—
Rf @) = lim LCHDT@ _ yp, (@40 —4]70
h—0 h h—0 h
2
_ o B B (et
h—0 h h—0

—  Lf'(QQ)#Rf' ().

Hence f'(x) is not differentiable at x = 2.

(iii) Show that f (x) = x | x | is differentiable x = 0.
2%

-x- ; x<0
f(X){

x2 ;x>0

>

Lf @ = tim L0 SO

il 2_
—(=n"-0_ lim /=0

= lim
h—0 —h h—0
. 0+h)— £ (0
R (0)= hlflof( + 2 /(0
2
= fm X =0 p = Lf' (0)=Rf" (0).
h—0

Hence f'(x) 1s differentiable at x = 0.
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(iv) Prove the following theorem :

“If a function y = f (x) is differentiable at a point then it must be continuous at that point”.

Let the function be differentiable at

2= _ lim (—h){ lim —f(a_h)_(a)}f(a)
_ . fla+h) - f(a) h—0 h—0 —h

h—0 h =0 x [Lf" (a)] + f(a) = f (a)
. Sl h)h_ (@) RHL. = hh_r)no f(a+h)

h—>0 -

= hli_r)no [f (a+h)— f(a)]+ f(a)

are finite numbers which are equal.
LHL. = lim f(a—h)
h—0

_ Tim 1{ fisd f(“hh)—f(a)

h—>0 h—0

}rf(a)
=0 X [Rf" ()] +f(a)=f(a)

Hence the function is continuous at x = a.

= lim [f (@)~ /(@)]+ (@)

Note: The converse of this theorem is not always true. If a function is continuous at a point, it may or may
not be differentiable at that point.

lllustration - 39 SYFEEP7 given function

!
x? sin—

f(x)= x
0

xz0

x=0

(A)  Discontinuous (B) Differentiable (C) Non-differentiable (D) None of these

SOLUTION : (B)
Let us check the differentiability first.

A CEIOEIAC)

R )= tim LOTD=SO

Lf'(0)= 1
/0= 10, —h 12 sint —0
! = lim —
(—h)> sin[hj—o AR
= lim = lim hsinl: lim A2x lim sinl
h—0 —h h—0 h h—>0 h—>0
~ lim hsinl: im hx Lim sinl = 0 % (number between — 1 and + 1) =0
h=>0  h h>0 k>0 h Hence L f' (0)=Rf' (0)=0.
= 0 X (number between — 1 and + 1) = 0 — Function is differentiable at x = 0.

= It must be continuous also at the same point.
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IS (E LR A7 x = 0 the given function

x sin(log x2) © x#0
0 ;o x=0

X

A) Discontinuous (B) Differentiable (C) Non-differentiable (D) None of these
SOLUTION : (C)
LHL= lim f (0—h)= lim (—h)sin log (—h)* = LHL=RHL.=f(0)
h—>0 h—0 . .
Hence f (x) is continuous at x = 0.

= — hlimoh sin log h? Test for Differentiability :
_)

o= i S (O—h)— f(0)
Ash — 0, log h* - — . L' (0) hh_r)n() W)
Hence sin log /? oscillates between — 1 and + 1.
— hsinlog (—h)* — 0

= lim

— LHL = — lim (h)x lim (sin log /%) h—0 —h
h—0 h—0
=—0 x (number between— 1 and + 1) =0 = lim sin (log hz)
h—0

RHL= lim f(0+h)
h—0 As the expression oscillates between — 1 and

+ 1, the limit does not exist.

T . 9, . . 2
_hhi)n()h sin log 5~ = hhgl() h hhi)n() sifgog / —  Left hand derivative is not defined.

— 0 x (oscillating between — 1 and + 1) = 0 Hence the function is not differentiable at

f(0)=0  (Given) F=1.

Note : As LHD is undefined there is no need to check RHD for differentiability as for differentiability both
LHD and RHD should be defined and equal.
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Illustration - 41 SSAs given function

2
X ; 0<x<l1
F= 2 which of the following is (are) correct :
25% —3x+> ; 1<x<2
(A)  f(x) is continuous ¥V x [0, 2] B) [’ (x) is continuous V x € [0, 2]
(C) [f7(x) is discontinuous at x = 1 (D) [ (x) is continuous ¥V x € [O, 2]
SOLUTION : (ABC)
Continuity of f (x) Atx =1,
For x # 1, f (x) is a polynomial and hence is LHL= lim g(x)= lim x=1
continuous. % il x—>1
Atx =1, : .
RHL = lim g(x) = lim (4x—3):1
: _oxr 1 Sy x—1F
LHL = lm f(x)= lim —=—
x—>1 xolm 2 2 g(l)=4-3=1
LHL =RHL =g (1
RU[- lim f(x)= lim (2x2 ~3x+ ij y &)
x—>1" x—>1" g (x)=f"(x) is continuous at x = 1.
oy 3,31 Continuity of /"' (x)
2 23 1 Let /i(x)= f"(x) 1 ; 0<x<l
X)= X)=
F=207-3M+3=- 4 5 l1<x<2
= LHL.=RHL. =f(1) For x # 1, h (x) is continuous because it is a
Therefore, f (x) is continuous at x = 1. constant function.
.. Atx =1,
Continuity of f' (x) )
LHL= lim #A(x)=1
Let g (x)=f" (x) x—>1"
X - 0<x<l1 RHL = Iim h(X):4
o R P o
4x=3 5 lsxs<2 Thus LHL # RHL
For x # 1, g (x) is linear polynomial and hence . h(x) is discontinuous at x = 1
continuous. Hence f (x) and f* (x) are continuous on

[0, 2] but /'’ (x) is discontinuous at x = 1.

Note : Continuity of /' (x) 1s same as differentiability of / (x).
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Illustration - 42 If f(x) and g (x) are differentiable at x = a then the value of

fDe@-g® /@, .

lim
xX—>a X —d
A) f(a)g(a)-f'(a)g'(a) B)  f(a)g(a)-g'(a)f(a)
©) f(a)g'a)-f'(a)g(a) (D)  None of these

SOLUTION : (B)

S (x) g(a)—gx) f(a)

lim
X—>a X—da
i 8@ - f(@g(@)+f(@)g@)-g() f(a)
xX—>a X —da
. {f(x)—f(a)}g(a)_ o {g(x)—g(a)}f(a)
xX—a X —d xX—>a -

=/ (@) g(a) - g (a) f(a)

U CHLLEREEY [ ef 1 (x) be defined in the interval [-2, 2] such that
S (x)= {

1 ; —2<x<0

x—1 ; 0O0<x<2
and g(x) =f(|x]|) +|f(x) | The number of point where g(x) is not differentiable in (-2, 2) is :
A 1 B) 2 © 3 (D) 4
SOLUTION : (B)
Consider f(|x]|) Consider | f (%) |

The given interval is —2 < x <2

|-1] ; —2<x<0
Replace x by | x | to get : Now | f(x)]= =1 : O<z<2
S22 = 0<|x|<£2
H i ituti 1 ; —2<x<0 v
enc?e f(lx]) cag be obtained by substituting S | f0)|= . .. (i)
| x | in place of x inx — 1 |lx—-1] ; O<x<2
[see definition of / (x)]. Adding (i) and (ii) we get :
= f(lx])=|x[-1, -2<x<2 [ 1x]-1+1 ; —2<x<0
-+ (1) SUxD+ @)= |x|-1+|x—-1] ; 0<x<2
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:>g(x):{ ! ;

| x|=1+[x—1] ;
On further simplification,

—x :

g(x)=qx-1+1-x ;

x—1+x-1 ;

-x ; —2<x<0

g(x)= 0 ; O<x<l

2x—-2 ; 1<x<2

Forx # 0 and x # 1, g (x) is a differentiable

—-2<x<0

0<x<2

—-2<x<0
O0<x<l

1<x<2

function because it is a linear polynomial.

Atx=0

. g(0-h)—g(0)
Ig ©=)fim, =

_ lim M:_l

h—0 —h

g(0+h)—g(0)
h

Rg' (0) =Rg'(0)= lim
h—0

= Lg' (0)=Rg (0).
Therefore g (x) is not differentiable at x = 0.
Atx =1

. g(-mn-g@)
Iy (1 =)fim ==
_ lim B:o
h—>0 —h
. g(+h)—g)
rg (1 =fim =
v 20+ h)—2-0 5
h—0 h

= Lg' (1)#Rg (1).
Therefore g (x) in not differential at x = 1.

Hence g (x) is not differentiable at x =0, 1 in
(-2, 2).




