Differential Calculus - 1

CONTINUITY

3.1 Introduction

Consider the functions : f(x) = [x], $g(x) = x^2$, $x \in R$. The graphs of f(x) and g(x) in the neighbourhood of argument x = 2 are shown in fig. 1 & 2 respectively. There is a break in the graph of f(x) at x = 2, whereas this is not so in that of g(x). We express this difference by saying that the function f(x) is discontinuous at x = 2 and the function g(x) is continuous at x = 2. As we approach 2 from either left or right, the values of g(x) approach its value at x = 2. But this does not happen for f(x), and this brings about the break in its graph at x = 2.

Fig. 1

OR mathematically,

$$\lim_{x \to 2^{-}} f(x) \neq \lim_{x \to 2^{+}} f(x) \text{ and } \lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{+}} g(x) = g(2)$$

We are thus led to the following definitions:

(a) Continuity at x = a

A function y = f(x) is continuous at x = a, if its limit at x = a exists and is equal to f(a) i.e.

Left hand limit = Right hand limit = f(a)

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$$

Fig. 2

Discontinuity at x = a(b)

We say that f(x) is discontinuous at x = a, if f(x) is not continuous at x = a.

OR

in other words, if any one or more of the conditions for the function f(x) to be continuous fails to be satisfied, f(x) is said to be discontinuous at x = a. Geometrically speaking, there must be a break in the graph of f(x) at x = a.

3.2 Theorems on Continuity

- Let f(x) and g(x) be the continuous functions x = a. Then the following functions are continuous at x = a.
 - (a) $f(x) \pm g(x)$

k f(x), k g(x) [where k is real]

(c) $f(x) \cdot g(x)$

- (d) $\frac{f(x)}{\sigma(x)}$, provided $g(a) \neq 0$.
- $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ is the nth degree polynomial function. This 2. function is continuous at all values of x.
- $y = \sin x$, $y = \cos x$ are continuous for all x. 3.

 $y = \log_a x$ is continuous for all x > 0.

 $y = a^x$ is continuous for all x.

- If y = f(x) is continuous for $x \in [a, b]$ and N is any number between f(a) and f(b), then there 4. is at least one number c between a and b such that f(c) = N.
- If y = f(x) is continuous for $x \in [a, b]$ and f(a) and f(b) are of opposite signs, then there exists 5. at least one solution of the equation f(x) = 0 in the open interval (a, b).

6. The Sandwich Theorem:

Suppose that $f(x) \le g(x) \le h(x)$

for all $x \neq c$ in some interval about c, and that f(x) and h(x) approach the same limit

L as x approaches c i.e.
$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$$
. Then $\lim_{x \to c} g(x) = L$.

7. If the function f is continuous at x = a and g is continuous at x = f(a) then composite function g(f(x)) is continuous at x = a.

Illustrating the Concepts:

(i) Discuss the continuity of
$$f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1} &; & x \neq 0 \\ 0 &; & x = 0 \end{cases}$$
 at the point $x = 0$.

LHL =
$$\lim_{h \to 0} f(0-h) = \lim_{h \to 0} \frac{e^{-1/h} - 1}{e^{-1/h} + 1} = \frac{\to 0 - 1}{\to 0 + 1} = -1$$

RHL =
$$\lim_{h \to 0} f(0+h) = \lim_{h \to 0} \frac{e^{1/h} - 1}{e^{1/h} + 1}$$

Divide N and D by $e^{1/h}$ to get:

RHL =
$$\lim_{h \to 0} \frac{1 - \frac{1}{e^{1/h}}}{1 + \frac{1}{e^{1/h}}} = \frac{1 - (\to 0)}{1 + (\to 0)} = 1$$

 \Rightarrow L.H.L. \neq R.H.L. \Rightarrow f(x) is discontinuous at x = 0.

- (ii) Discuss the continuity of the function : g(x) = [x] + [-x] at integral values of x. Let us simplify the definition of the function :
- (I) If x is an integer: $\Rightarrow [x] = [n+f] = n$ [x] = x and [-x] = -x $\Rightarrow g(x) = x - x = 0$ $\Rightarrow [x] = [n+f] = n$ and [-x] = [-n-f] = [(-n-1) + (1-f)]= -n-1
- (II) If x is not integer: [because $0 < f < 1 \Rightarrow 0 (1 f) < 1$]

 Let x = n + f [Hence g(x) = [x] + [-x][where n is an integer and $f \in (0, 1)$] = n + (-n 1) = -1

So we get:

$$g(x) = \begin{cases} 0, & \text{if } x \text{ is an integer} \\ -1, & \text{if } x \text{ is not an integer} \end{cases}$$

Let us discuss the continuity of g(x) at a point x = a [where $a \in I$]

L.H.L. =
$$\lim_{x \to a^{-}} g(x) = -1$$

[: $as x \rightarrow a$, x is not an integer]

R.H.L. =
$$\lim_{x \to a^{+}} g(x) = -1$$

[: $as x \rightarrow a$, x is not an integer]

but g(a) = 0 because a is an integer. Hence g(x) has a removable discontinuity at integral values of x.

Illustration - 31 The values a and b so that the function :

$$f(x) = \begin{cases} x + a\sqrt{2}\sin x & ; & 0 \le x < \frac{\pi}{4} \\ 2x\cot x + b & ; & \frac{\pi}{4} \le x \le \frac{\pi}{2} \\ a\cos 2x - b\sin x & ; & \frac{\pi}{2} < x \le \pi \end{cases}$$
 is continuous $x \in [0, \pi]$ is :

(A)
$$a = \frac{\pi}{6}, b = \frac{-\pi}{12}$$
 (B) $a = \frac{\pi}{3}, b = \frac{-\pi}{12}$ (C) $a = \frac{\pi}{6}, b = \frac{\pi}{12}$ (D) None of these

SOLUTION: (A)

At
$$x = \pi/4$$
: Left hand limit = $\lim_{x \to \frac{\pi^{-}}{4}} f(x) = \lim_{x \to \frac{\pi^{-}}{4}} (x + a\sqrt{2}\sin x) = \frac{\pi}{4} + a$

Right hand limit =
$$\lim_{x \to \frac{\pi^+}{4}} f(x) = \lim_{x \to \frac{\pi^+}{4}} (2x \cot x + b) = \frac{\pi}{2} + b$$

$$f\left(\frac{\pi}{4}\right) = 2\left(\frac{\pi}{4}\right)\cot\frac{\pi}{4} + b = \frac{\pi}{2} + b$$

for continuity, these three must be equal

$$\Rightarrow \frac{\pi}{4} + a = \frac{\pi}{2} + b \Rightarrow a - b = \frac{\pi}{4} \qquad \dots (i)$$

At
$$x = \pi/2$$
: Left hand limit = $\lim_{x \to \frac{\pi}{2}} (2x \cot x + b) = 0 + b = b$

 $\tan 8x$

Right hand limit =
$$\lim_{x \to \frac{\pi^{+}}{2}} (a \cos 2x - b \sin x) = -a - b$$
 $f\left(\frac{\pi}{2}\right) = 0 + b$ for continuity, $b = -a - b$ $\Rightarrow a + 2b = 0$... (ii)

Solving (i) and (ii) for a and b, we get: $b = -\frac{\pi}{12}$, $a = \frac{\pi}{6}$

Illustration - 32

$$Let f(x) = \begin{cases} \left(1 + |\sin x|\right)^{\frac{a}{|\sin x|}} & ; & \frac{-\pi}{6} < x < 0 \\ b & ; & x = 0 \end{cases}$$

$$e^{\left(\frac{\tan 8x}{\tan 3x}\right)} & ; & 0 < x < \frac{\pi}{6} \end{cases}$$

The value a and b such that f(x) is continuous at x = 0 is:

(A)
$$a = 8, b = e^8$$
 (B) $a = \frac{8}{3}, b = e^{-8}$ (C) $a = \frac{8}{3}, b = e^{8/3}$ (D) None of these

SOLUTION: (C)

Left hand limit at x = 0

L.H.L =
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left[(1 + |\sin x|)^{\frac{a}{|\sin x|}} \right]$$

$$\Rightarrow \text{L.H.L} = \lim_{h \to 0} f(0 - h)$$

$$\Rightarrow \text{L.H.L} = \lim_{h \to 0} \left[(1 + |\sin h|)^{\frac{a}{|\sin h|}} \right] = e^{a}$$

$$\left[\text{using : } \lim_{t \to 0} (1 + t)^{1/t} = e \right]$$

Right hand limit x = 0

R.H.L. =
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} e^{\tan 3x}$$

 \Rightarrow R.H.L. = $\lim_{h \to 0} f(0+h)$
 \Rightarrow R.H.L. = $\lim_{h \to 0} e^{\frac{\tan 8h}{\tan 3h}}$
 \Rightarrow R.H.L. = $\lim_{h \to 0} e^{\frac{8}{3} \left(\frac{\tan 8h}{8h} \cdot \frac{3h}{\tan 3h}\right)} = e^{8/3}$

for continuity,

$$L.H.L. = R.H.L. = f(0)$$

$$\Rightarrow e^a = e^{2/3} = b \Rightarrow a = \frac{8}{3}, b = e^{8/3}$$

Illustration - 33

Let
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2} & ; & x < 0 \\ a & ; & x = 0 \\ \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x} - 4}} & ; & x > 0 \end{cases}$$

The value of a, if possible, so that the function is continuous at x = 0 is:

(A) 6

(B)

8

(C) -6

(**D**) None

None of these

SOLUTION: (B)

It is given that

$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2} & ; & x < 0 \\ a & ; & x = 0 \\ \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x} - 4}} & ; & x > 0 \end{cases}$$

is continuous at x = 0.

So we can take:

$$\lim_{x \to 0^{-}} f(x) = f(0) = \lim_{x \to 0^{+}} f(x)$$

Left hand limit at x = 0,

L.H.L.=
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{1 - \cos 4x}{x^{2}}$$

Now, L.H.L. =
$$\lim_{h \to 0} f(0-h)$$

$$\Rightarrow L.H.L. = \lim_{h \to 0} \frac{1 - \cos 4h}{h^2} = \lim_{h \to 0} \frac{2\sin^2 2h}{h^2} = 8$$

$$\left[\text{using: } \lim_{t \to 0} \frac{\sin t}{t} = 1 \right]$$

Right hand limit at x = 0

R.H.L. =
$$\lim_{h \to 0} f(0+h)$$

$$\Rightarrow R.H.L. = \lim_{h \to 0} \frac{\sqrt{h}}{\sqrt{16 + \sqrt{h}} - 4}$$

Rationalise denominator to get:

R.H.L. =
$$\lim_{h \to 0} \frac{\sqrt{h}}{\sqrt{h}} \left(\sqrt{16 + \sqrt{h}} + 4 \right) = 8$$

For function f(x) to be continuous at x = 0,

$$L.H.L. = R.H.L. = f(0)$$

$$\Rightarrow$$
 8 = 8 = a

$$\Rightarrow a = 8$$

Illustration - 34

If
$$f(x) = \frac{\sin 2x + A \sin x + B \cos x}{x^3}$$
 is continuous at $x = 0$, find the values of A, B

and f(0) are:

(A)
$$A = 2, B = 0, f(0) = -1$$

(B)
$$A = -2, B = 0, f(0) = -1$$

(C)
$$A = 0, B = -2, f(0) = 1$$

SOLUTION: (B)

As
$$f(x)$$
 is continuous at $x = 0$, $f(0) = \lim_{x \to 0} \frac{\sin 2x + A \sin x + B \cos x}{x^3}$

Using expansions of sin2x, sinx and cosx, we get:

$$f(0) = \lim_{x \to 0} \frac{\left(2x - \frac{(2x)^3}{\underline{|3|}} + \dots\right) + A\left(x - \frac{(x)^3}{\underline{|3|}} + \dots\right) + B\left(1 - \frac{x^2}{\underline{|2|}} + \frac{x^4}{\underline{|4|}} + \dots\right)}{x^3}$$

$$f(0) = \lim_{x \to 0} \frac{B + (A+2)x \frac{-B}{2}x^2 - \left[\frac{2^3}{2} + \frac{A}{2}\right]x^3 + \dots}{x^3}$$

For above limit to be finite (exist), coefficient of x^0 , x^1 and x^2 should be 0 in numerator i.e.,

$$B=0, A+2=0$$
 and $\frac{-B}{2}=0$ \Rightarrow $A=-2$ and $B=0$

On replacing, we get:
$$f(0) = \lim_{x \to 0} = \frac{-x^3 + \dots}{x^3}$$

$$f(0) = -1$$

So, we get:
$$A = -2$$
, $B = 0$, $f(0) = -1$.

Note: We can also solve this question using L'Hospital rule.

Illustration - 35

The point where $f(x) = \lim_{n \to \infty} \left(\sin \frac{\pi x}{2} \right)^{2n}$ is discontinuous are:

$$(\mathbf{A}) \qquad x = n, \, n \in I$$

(B)
$$x = 2n, n \in I$$

(C)
$$x = (2n+1), n \in I$$

SOLUTION: (C)

Since
$$\lim_{n \to \infty} x^{2n} = \begin{cases} 0 & ; |x| < 1 \\ 1 & ; |x| = 1 \end{cases}$$

$$\therefore f(x) = \lim_{n \to \infty} \left(\sin \frac{\pi x}{2} \right)^{2n}$$

$$= \begin{cases} 0 & ; \left| \sin \frac{\pi x}{2} \right| < 1 \\ 1 & ; \left| \sin \frac{\pi x}{2} \right| = 1 \end{cases}$$

Thus f(x) is continuous for all x, except for

those values of x for which $\left| \sin \frac{\pi x}{2} \right| = 1$

$$\Rightarrow \qquad \sin\frac{\pi x}{2} = \pm 1$$

$$\Rightarrow$$
 $x = (2n + 1) \pi$

i.e. x is an odd integer

$$\Rightarrow$$
 $x = (2n + 1)$ [where $n \in I$]

Check continuity at x = (2n + 1):

L.H.L. =
$$\lim_{x \to 2n+1} f(x) = 0$$
 ... (i)

and
$$f(2n+1) = 1$$

L.H.L.
$$\neq f(2n+1)$$
,

f(x) is discontinuous at x = 2n + 1[i.e. at odd integers]

Hence f(x) is discontinuous at x = (2n + 1).

Illustration - 36 The number of points where f(x) is discontinuous in [0, 2] where $f(x) = \begin{cases} [\cos \pi x] & ; & x \le 1 \\ [x-2] | 2x-3 | & ; & x > 1 \end{cases}$ where []: represents the greatest integer function is:

$$f(x) = \begin{cases} [\cos \pi x] & ; & x \le 1 \\ [x-2] | 2x - 3 | & ; & x > 1 \end{cases}$$

SOLUTION: (C)

First of all find critical points where f(x) may be discontinuous.

Consider $x \in [0, 1]$: $f(x) [\cos \pi x]$

x is discontinuous where $x \in I$. $\cos \pi x \in I$. \Rightarrow

In [0, 1], $\cos \pi x$ is an integer at x = 0, $x = \frac{1}{2}$ and x = 1.

$$\Rightarrow$$
 $x = 0, x = \frac{1}{2}$ and $x = 1$ are critical points ... (i)

Consider $x \in (1, 2]$:

$$f(x) = [x - 2] |2x - 3|$$

In
$$x \in (1, 2), [x-2] = -1$$
 and for $x = 2$; $[x-2] = 0$

Also
$$|2x - 3|$$
 $\Rightarrow x = \frac{3}{2}$
 $\Rightarrow x = \frac{3}{2}$ and $x = 2$ are critical points ...(ii)

Combining (i) and (ii), critical points are $0, \frac{1}{2}, 1, \frac{3}{2}, 2$.

On dividing f(x) about the 5 critical points, we get:

$$f(x) = \begin{cases} 1 & ; \quad x = 0 & \because & \cos(\pi 0) = 1 \\ 0 & ; \quad 0 < x \le \frac{1}{2} & \because & 0 \le \cos \pi x < 1 \implies [\cos \pi x] = 0 \\ -1 & ; \quad \frac{1}{2} < x \le 1 & \because & -1 \le \cos \pi x < 0 \implies [\cos \pi x] = -1 \\ -1(3 - 2x) & ; \quad 1 < x \le \frac{3}{2} & \because & |2x - 3| = 3 - 2x \text{ and } [x - 2] = -1 \\ -1(2x - 3) & ; \quad \frac{3}{2} < x < 2 & \because & |2x - 3| = 2x - 3 \text{ and } [x - 2] = -1 \\ 0 & ; \quad x = 2 & \because & [x - 2] = 0 \end{cases}$$

Checking continuity at x = 0:

R.H.L. =
$$\lim_{x \to 0^{+}} (0) = 0$$
 and $f(0) = 1$

$$\Rightarrow$$
 $f(x)$ is discontinuous at $x = 0$.

[As R.H.L. $\neq f(0)$]

Checking continuity at x = 1/2:

L.H.L. =
$$\lim_{x \to \frac{1}{2}} f(x) = 0$$

R.H.L. =
$$\lim_{x \to \frac{1^{+}}{2}} f(x) = -1$$

$$f(x)$$
 is discontinuous at $x = \frac{1}{2}$.

[As L.H.L. \neq R.H.L.]

Checking continuity at x = 1:

L.H.L. =
$$\lim_{x \to 1^{-}} f(x) = -1$$

R.H.L. =
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (2x - 3) = -1$$
 and $f(1) = -1$

f(x) is continuous at x = 1.

[As L.H.L. = R.H.L. = f(1)]

Checking continuity at x = 3/2:

L.H.L. =
$$\lim_{x \to \frac{3^{-}}{2}} (2x - 3) = 0$$

R.H.L. =
$$\lim_{x \to \frac{3^{+}}{2}} (3 - 2x) = 0$$
 and $f\left(\frac{3}{2}\right) = 0$

f(x) is continuous at x = 3/2.

As L.H.L. = R.H.L. = $f\left(\frac{3}{2}\right)$

Checking continuity at x = 2:

L.H.L. =
$$\lim_{x \to 2^{-}} (3-2x) = -1$$
 and $f(2) = 0$

f(x) is discontinuous at x = 2.

[As L.H.L $\neq f(2)$]

3.3 Continuity in an interval

(i) A function f(x) is said to be continuous in the interval (a, b)

if f(x) is continuous at each and every point $\in (a, b)$

For any $c \in (a, b)$, f(x) is continuous if

$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = f(c)$$

(ii) A function f (x) is said to be continuous in the closed inteval [a, b] if it is continuous at every point in the interval (a, b) (see above section) and the continuity at the end points is checked according to the following rule

Continuity at x = a

f(x) is continuous at x = a if

If
$$f(a) = \lim_{x \to a^{+}} f(x) = \lim_{h \to 0} f(a+h) = \text{R.H.L.}$$

= a finite quantity (Fig.)

L.H.L. should not be evaluated to check continuity x = a

Continuity x = b

f(x) is continuous at x = b

If
$$f(b) = \lim_{x \to b^{-}} f(x) = \lim_{h \to 0} f(b-h) = \text{L.H.L.} = \text{a finite quantity.}$$

R.H.L. should not be evaluated to check continuity x = b.

3.4 Discontinuous Functions

A function f is said to be discontinuous at point a of its domain D if it is not continuous there. The point 'a' is then called a point of discontinuity of the function. The discontinuity may arise due to any of the following situations :

- (i) L.H.L. or R.H.L. or both do not exist. at x = a i.e. they either approach to ' ∞ ' or $-\infty$ or oscillate between finite or infinite limits.
- (ii) L.H.L. as well as R.H.L. exist, but are unequal i.e. L.H.L. \neq R.H.L. at x = a.
- (iii) L.H.L. as well as R.H.L. both exist and are equal but there values is not equal to f(a) i.e. L.H.L. = R.H.L. $\neq f(a)$ at x = a

3.5 Types of Discontinuities

Following are the types of discontinuities

(i) Removal discontinuity:

A function f(x) is said to have a Removable discontinuity at a point x = a, if the limit of f(x) at x = a exists but is not equal to f(a),

i.e.,
$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) \neq f(a)$$
$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) \neq f(a)$$
$$(m) \qquad (m)$$

(ii) Discontinuity of the first kind:

The function f(x) is said to have a discontinuity of first kind (or an simple discontinuity) at a point x = a

if both L.H.L. and R.H.L. exist but are not equal

The discontinuity of the first kind is also known as jump discontinuity where jump = |R.H.L. - L.H.L|. at x = a.

i.e.
$$\lim_{x \to a-} f(x) \neq \lim_{x \to a+} f(x)$$

Note: Discontinuity in this case is non-removable.

(iii) Discontinuity of the second-kind:

A function y = f(x) is said to have a discontinuity of second kind at a point x = a if either or both of the limits

$$\lim_{x \to a^{-}} f(x)$$
 and $\lim_{x \to a^{+}} f(x)$ does not exist i.e.,

if either or both of the limit

$$\lim_{x \to a^{-}} f(x)$$
 and $\lim_{x \to a^{+}} f(x)$ is infinite or as oscillatary

The discontinuity of second kind is also known as essential discontinity.

Illustrating the Concepts:

(i) If
$$f(x) = \frac{1}{1 + e^{1/x}}$$
, $x \ne 0$, discuss the continuity of $f(x)$ at $x = 0$.

At
$$x = 0$$

L.H.L. =
$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0-h) = \lim_{h \to 0} \frac{1}{1 + e^{-1/h}} = \frac{1}{1 + e^{-\infty}} = \frac{1}{1 + 0} = 1$$

and R.H.L. =
$$\lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} \frac{1}{1 + e^{+1/h}} = \frac{1}{1 + e^{+\infty}} = \frac{1}{\infty} = 0$$

Hence L. H.L. ≠ R.H.L.

 \Rightarrow f(x) has a jump discontinuity at x = 0.

(ii) Discuss the continuity of the function $f(x) = \sin(\log_e |x|)$ at x = 0.

L.H.L. =
$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h)$$

= $\lim_{h \to 0} \sin(\log_{e} |0 - h|)$
= $\lim_{h \to 0} \sin(\log_{e} h) = \sin(\log_{e} 0) = \sin(-\infty) = -\sin\infty$
= oscillating between - 1 and 1.

R.H.L. =
$$\lim_{x \to 0+} f(x) = \lim_{h \to 0} f(0+h)$$

= $\lim_{h \to 0} \sin(\log_e |0+h|)$
= $\lim_{h \to 0} \sin(\log_e h) = \sin(\log_e 0) = \sin(-\infty) = -\sin\infty$
= oscilating between - 1 and 1.

Therefore L.H.L. and R.H.L. are undefined.

Hence f(x) has a essential discontinuity.

(iii) A function f(x) satisfies the following property:

$$f(x + y) = f(x) f(y)$$

Show that the function is continuous for all values of x if it is continuous at x = 1.

As the function is continuous at x = 1, we have

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

$$\Rightarrow \lim_{h \to 0} f(1-h) = \lim_{h \to 0} f(1+h) = f(1)$$
 [using $f(x+y) = f(x) f(y)$]

we get,

$$\Rightarrow \lim_{h \to 0} f(1) f(-h) = \lim_{h \to 0} f(1) f(h) = f(1)$$

$$\Rightarrow \lim_{h \to 0} f(-h) = \lim_{h \to 0} f(h) = 1 \qquad \dots (i)$$

Now consider some arbitrary point x = a.

Left hand limit =
$$\lim_{h \to 0} f(a-h) = \lim_{h \to 0} f(a) f(-h)$$

= $f(a) \lim_{h \to 0} f(-h) = f(a)$ [using (i)]

Right hand limit =
$$\lim_{h \to 0} f(a+h) = \lim_{h \to 0} f(a) f(h)$$

= $f(a) \lim_{h \to 0} f(h) = f(a)$ [using (i)]

Hence at any arbitrary point (x = a),

$$L.H.L. = R.H.L. = f(a)$$

 \Rightarrow function is continuous for all values of x.

Illustration - 37

If g(x) = f(f(x)) where $f(x) = \begin{cases} 1+x & \text{; } 0 \le x \le 2 \\ 3-x & \text{; } 2 < x \le 3 \end{cases}$ then the number of point of

discontinuity of g(x) in [0, 3] is:

SOLUTION: (A)

$$g(x) = f(f(x)) = \begin{cases} f(1+x) & ; & 0 \le x \le 2 \\ f(3-x) & ; & 2 < x \le 3 \end{cases}$$

$$= \begin{cases} f(1+x) & ; & 0 \le x \le 1 \\ f(1+x) & ; & 1 < x \le 2 \\ f(3-x) & ; & 2 < x \le 3 \end{cases}$$

now
$$x \in [0, 1]$$
 \Rightarrow $(1 + x) \in [1, 2]$

$$x \in (1, 2] \qquad \Rightarrow \qquad (1+x) \in (2, 3]$$

$$x \in (2, 3]$$
 \Rightarrow $(3-3) \in [0, 1)$

Hence

$$g(x) = \begin{cases} f(1+x) & \text{for } 0 \le x \le 1 \implies 1 \le x + 1 \le 2 \\ f(1+x) & \text{for } 1 < x \le 2 \implies 2 < x + 1 \le 3 \\ f(3-x) & \text{for } 2 < x \le 3 \implies 0 \le 3 - x < 1 \end{cases}$$

Now if $(1 + x) \in [1, 2]$ then

$$f(1+x) = 1 + (1+x) = 2 + x$$
 ...(i)

[from the original definition of f(x)]

Similarly if $(1 + x) \in (2, 3)$ then

$$f(1 + x) = 3 - (1 + x) = 2 - x$$
 ... (ii)

If
$$(3 - x) \in (0, 1)$$
 then

$$f(3-x) = 1 + (3-x) = 4-x$$
 ... (iii)

Using (i), (ii) and (iii), we get:

$$g(x) = \begin{cases} 2+x & ; & 0 \le x \le 1 \\ 2-x & ; & 1 < x \le 2 \\ 4-x & ; & 2 < x \le 3 \end{cases}$$

Now we will check the continuity of g(x) at x = 1, 2.

At
$$x = 1$$

L.H.L. =
$$\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} (2+x) = 3$$

R.H.L. =
$$\lim_{x \to 1^{+}} g(x) = \lim_{x \to 1^{+}} (2 - x) = 1$$

[As L.H.L. \neq R.H.L., g(x) is discontinuous at x = 1]

At
$$x = 2$$

L.H.L. =
$$\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{-}} (2 - x) = 0$$

R.H.L. =
$$\lim_{x \to 2^{+}} g(x) = \lim_{x \to 2^{+}} (4 - x) = 2$$

[As L.H.L. \neq R.H.L., g(x) is discontinuous at x = 2]

Illustration - 38

The natural number a for which $\sum_{k=1}^{n} f(a+k) = 16(2^{n}-1)$ where the function f satisfies

the relation f(x + y) = f(x) f(y) for all natural numbers x, y and further f(1) = 2 is:

- (A) 2
- **(B)** 3
- **(C)** 1
- **(D)** None of these

SOLUTION: (B)

Since the function f satisfies the relation

$$f(x+y) = f(x) f(y)$$

It must be an exponential function.

Let the base of this exponential function be a.

Thus
$$f(x) = a^x$$

It is given that f(1) = 2. So we can make

$$f(1) = a^1 = 2 \Rightarrow a = 2$$

Hence, the function is $f(x) = 2^x$...(i)

[Alternatively, we have]

$$f(x) = f(x - 1 + 1) = f(x - 1) f(1)$$

$$= f(x - 2 + 1) f(1)$$

$$= f(x - 2) [f(1)]^{2} = \dots = [f(1)]^{x} = 2^{x}$$

where x is an integer

Using equation (i), the given expression reduces to :

$$\sum_{k=1}^{n} 2^{a+k} = 16(2^{n} - 1)$$

$$\Rightarrow \sum_{k=1}^{n} 2^{a} \cdot 2^{k} = 16 (2^{n} - 1)$$

$$\Rightarrow 2^a \sum_{k=1}^n 2^k = 16(2^n - 1)$$

$$\Rightarrow 2^a (2+4+8+16+...+2^n) = 16(2^n-1)$$

$$\Rightarrow 2^{a} \left[\frac{2(2^{n} - 1)}{2 - 1} \right] = 16(2^{n} - 1)$$

$$\Rightarrow 2^{a+1} = 16 \Rightarrow 2a+1 = 2^4$$

$$\Rightarrow a + 1 = 4 \Rightarrow a = 3$$

Differential Calculus - 1

DIFFERENTIABILITY

4.1 Definition

The derivative of function y = f(x) is defined as the instantaneous rate of change of y {or f(x)} with respect to the change in the independent variable x.

Derivative =
$$\lim_{h \to 0} \frac{\text{change in } y}{\text{change in } x}$$

As x changes from x to x + h, y changes from f(x) to f(x + h). Hence

Derivative =
$$\frac{dy}{dx} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

4.2 Existence of derivative (Differentiability) at a point

We have already defined deriavative of y with respect to x as the instantaneous rate of change of y with respect to x.

Consider an arbitary point x = a.

(a) If x changes from a to a + h, derivative at x = a is:

Right Hand Derivative =
$$R f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

(b) If x changes from a to a - h, derivative at x = a is:

Left Hand Derivative =
$$Lf'(a) = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$$

We say that derivative at x = a exists or the function is differentiable at x = a if both the left hand derivative and the right hand derivative are finite and equal.

 \Rightarrow Rf'(a) = Lf'(a) is the condition for differentiability at x = a.

$$\Rightarrow \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$$

4.3 Another Expression for f'(a)

We can also find derivative of f(x) at x = a with the use of the following formula :

$$f'(a) = \lim_{x \to 0} \frac{f(x) - f(a)}{x - a}$$

4.4 Geometrical Meaning of Derivative

4.4.1 Geometrical meaning of Right hand derivative

Let P(a, f(a)) and Q(a + h, f(a + h)) be two points very near to each other on the curve y = f(x).

Using slope of a line formula, we get

Slope of
$$PQ = \frac{f(a+h) - f(a)}{(a+h) - a}$$

Now apply $\lim_{h\to 0}$ on both sides to get :

$$\lim_{h \to 0} (\text{slope of chord } PQ) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Right hand derivative

=
$$R[f'(a)] = \lim_{h \to 0}$$
 (slope of chord PQ)

As $h \to 0$, $Q \to P$ on curve, $a + h \to a$ on x-axis and $f(a + h) \to f(a)$ on y-axis.

When h is infinitely small, chord PO almost becomes tangent drawn at P towards right i.e.

$$R'[f(a)] = \lim_{h \to 0} (\text{slope of chord } PQ)$$

= slope of tangent drawn at P towards right.

Hence geometrical significance of right hand derivative is that it represents slope of tangent drawn at *P* towards right.

4.4.2 Geometrical meaning of Left hand derivative

Let P(a, f(a)) and Q(a - h, f(a - h)) be two points very near to each other on the curve y = f(x).

Using slope of a line formula, we get : Slope of $PQ = \frac{f(a-h) - f(a)}{(a-h) - a}$

Now apply $\lim_{h \to 0}$ on both sides to get: $\lim_{h \to 0} (\text{slope of chord } PQ) = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$

Left hand derivative = $L[f'(a)] = \lim_{h \to 0}$ (slope of chord PQ)

As $h \to 0$, $Q \to P$ on curve, $a - h \to a$ on x-axis and $f(a - h) \to f(a)$ on y-axis. When h is infinitely small, chord PO almost becomes tangent drawn at P towards left i.e.

$$L'[f(a)] = \lim_{h \to 0} \text{ (slope of chord } PQ\text{)}$$

= slope of tangent drawn at P towards left.

Hence geometrical significence of left hand derivative is that it represents slope of tangent drawn at *P* towards left.

4.4.3 Geometrical meaning of existence of derivative

We know derivative exists at x = a, if L[f'(a)] = R[f'(a)]

- \Rightarrow Slope of tangent drawn at P towards left = slope of tangent drawn at P towards right
- ⇒ Same tangent line towards left and right
- \Rightarrow Smooth curve around x = a

Hence if f(x) is differentiable or derivative at x = a exists, then at x = a we can drawn only one tangent towards left and right.

i.e. curve would be smooth in the neighbourhood of a.

4.5 Existence of derivative (Differentiability) on an interval

Let y = f(x) is a function which is defiend in the closed interval [a, b].

- (a) If f(x) is a differentiable at every point on the open interval (a, b), then f(x) is said to be differentiable on (a, b).
- (b) If f(x) is differentiable on (a, b) and $f'(a^+)$ and $f'(b^-)$ exists finitely, then f(x) is said to be differentiable on closed interval [a, b].

4.6 Results

- (a) If f(x) is defferentiable at x = a, the it must be continuous at x = a or if f(x) is differentiable on the interval (a, b), then it must be continuous for all x lying in this interval.
- (b) The converse of above result is not true i.e. if function is continuous at x = a, then it may or may not be differentiable at x = a. OR if function is continuous on the interval (a, b) then it may or may not differentiable for all x in that interval.
- (c) If Rf'(a) and Lf'(a) both exist finitely (both may or may not be equal) then f(x) is continuous at x = a.
- (d) If a function is differentiable, its graph must be smooth i.e. there should be no break or corner.

Illustrating the Concepts:

(i) Discuss the differentiability
$$f(x)$$
 at $x = -1$, if $f(x) = \begin{cases} 1 - x^2 & ; & x \le -1 \\ 2x + 2 & ; & x > -1 \end{cases}$

$$f(-1) = 1 - (-1)^2 = 0$$

Right hand derivative at x = -1 is

$$Rf'(-1) = \lim_{h \to 0} \frac{f(-1+h) - f(-1)}{h}$$
$$= \lim_{h \to 0} \frac{2(-1+h) - 2 - 0}{h} = \lim_{h \to 0} \frac{2h}{h} = 2.$$

$$Lf'(-1) = \lim_{h \to 0} \frac{f(-1-h) - f(-1)}{-h}$$
$$= \lim_{h \to 0} \frac{1 - (-1-h)^2 - 0}{-h} = \lim_{h \to 0} \frac{-h^2 - 2h}{-h} = \lim_{h \to 0} (h+2) = 2$$

Since
$$Lf'(-1) = Rf'(-1) = 2$$
.

 \Rightarrow The function is differentiable at x = -1.

(ii) Show that the functin $f(x) = |x^2 - 4|$ is not differentiable at x = 2.

$$f(x) = \begin{cases} x^2 - 4 & ; & x \le -2 \\ 4 - x^2 & ; & -2 < x < 2 \\ x^2 - 4 & ; & x \ge 2 \end{cases}$$

$$\Rightarrow f(2) = 2^2 - 4 = 0$$

$$Lf'(2) = \lim_{h \to 0} \frac{f(2-h) - f(2)}{-h} = \lim_{h \to 0} \frac{4 - (2-h)^2 - 0}{-h}$$
$$= \lim_{h \to 0} \frac{4h - h^2}{-h} = \lim_{h \to 0} (h - 4) = -4.$$

$$Rf'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{[(2+h)^2 - 4] - 0}{h}$$
$$= \lim_{h \to 0} \frac{h^2 + 4h}{h} = \lim_{h \to 0} (h+4) = 4$$

$$\Rightarrow$$
 $Lf'(2) \neq Rf'(2)$.

Hence f(x) is not differentiable at x = 2.

(iii) Show that $f(x) = x \mid x \mid is$ differentiable x = 0.

$$f(x) = \begin{cases} -x^2 & ; & x \le 0 \\ x^2 & ; & x > 0 \end{cases}$$

$$Lf'(0) = \lim_{h \to 0} \frac{f(0-h) - f(0)}{-h}$$

$$= \lim_{h \to 0} \frac{-(-h)^2 - 0}{-h} = \lim_{h \to 0} h = 0$$

$$Rf'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{h^2 - 0}{h} = 0 \implies Lf'(0) = Rf'(0).$$

Hence f(x) is differentiable at x = 0.

(iv) Prove the following theorem:

"If a function y = f(x) is differentiable at a point then it must be continuous at that point".

Let the function be differentiable at x = a

$$\Rightarrow \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

and
$$\lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$$

are finite numbers which are equal.

L.H.L. =
$$\lim_{h \to 0} f(a - h)$$

= $\lim_{h \to 0} [f(a - h) - f(a)] + f(a)$

$$= \lim_{h \to 0} (-h) \left[\lim_{h \to 0} \frac{f(a-h) - (a)}{-h} \right] + f(a)$$

$$= 0 \times [Lf'(a)] + f(a) = f(a)$$
R.H.L. = $\lim_{h \to 0} f(a+h)$

$$= \lim_{h \to 0} [f(a+h) - f(a)] + f(a)$$

$$= \lim_{h \to 0} h \left[\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \right] + f(a)$$
$$= 0 \times [Rf'(a)] + f(a) = f(a)$$

Hence the function is continuous at x = a.

Note: The converse of this theorem is not always true. If a function is continuous at a point, it may or may not be differentiable at that point.

Illustration - 39 At x = 0 the given function

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & ; & x \neq 0 \\ 0 & ; & x = 0 \end{cases}$$
 is:

- (A) Discontinuous
- (B) Differentiable
- (C) Non-differentiable
- (**D**) None of these

SOLUTION: (B)

Let us check the differentiability first.

$$Lf'(0) = \lim_{h \to 0} \frac{f(0-h) - f(0)}{-h}$$

$$= \lim_{h \to 0} \frac{(-h)^2 \sin\left(\frac{1}{-h}\right) - 0}{-h}$$

$$= \lim_{h \to 0} h \sin\frac{1}{h} = \lim_{h \to 0} h \times \lim_{h \to 0} \sin\frac{1}{h}$$

$$= 0 \times (\text{number between} - 1 \text{ and } + 1) = 0$$

$$Rf'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{h^2 \sin \frac{1}{h} - 0}{h}$$

$$= \lim_{h \to 0} h \sin \frac{1}{h} = \lim_{h \to 0} h \times \lim_{h \to 0} \sin \frac{1}{h}$$

$$= 0 \times (\text{number between} - 1 \text{ and } + 1) = 0$$

Hence L f'(0) = R f'(0) = 0.

- \Rightarrow Function is differentiable at x = 0.
- \Rightarrow It must be continuous also at the same point.

At x = 0 the given function Illustration - 40

$$f(x) = \begin{cases} x \sin(\log x^2) & ; & x \neq 0 \\ 0 & ; & x = 0 \end{cases}$$
 is:

- (A) Discontinuous
- **(B)** Differentiable
- (C) Non-differentiable (D) None of these

SOLUTION: (C)

LHL =
$$\lim_{h \to 0} f(0-h) = \lim_{h \to 0} (-h) \sin \log (-h)^2$$

= $-\lim_{h \to 0} h \sin \log h^2$

As $h \to 0$ log $h^2 \to -\infty$

Hence $\sin \log h^2$ oscillates between -1 and +1.

$$\Rightarrow LHL = -\lim_{h \to 0} (h) \times \lim_{h \to 0} (\sin \log h^2)$$

$$= -0 \times (\text{number between} - 1 \text{ and } + 1) = 0$$

$$R.H.L. = \lim_{h \to 0} f(0 + h)$$

$$= \lim_{h \to 0} h \sin \log h^2 = \lim_{h \to 0} h \lim_{h \to 0} \sin \log h^2$$

$$= 0 \times (\text{oscillating between} - 1 \text{ and } + 1) = 0$$

$$f(0) = 0$$
 (Given)

 \Rightarrow L.H.L.= R.H.L. = f(0)

Hence f(x) is continuous at x = 0.

Test for Differentiability:

$$Lf'(0) = \lim_{h \to 0} \frac{f(0-h) - f(0)}{-h}$$

$$=\lim_{h\to 0} \frac{-h\sin\log(-h)^2 - 0}{-h}$$

$$= \lim_{h \to 0} \sin (\log h^2)$$

As the expression oscillates between -1 and + 1, the limit does not exist.

Left hand derivative is not defined.

Hence the function is not differentiable at

x = 0.

Note: As LHD is undefined there is no need to check RHD for differentiability as for differentiability both LHD and RHD should be defined and equal.

Illustration - 41 For the given function

$$f(x) = \begin{cases} \frac{x^2}{2} & \text{; } 0 \le x < 1\\ 2x^2 - 3x + \frac{3}{2} & \text{; } 1 \le x \le 2 \end{cases}$$
 which of the following is (are) correct:

- (A) f(x) is continuous $\forall x \in [0, 2]$
- **(B)** f'(x) is continuous $\forall x \in [0, 2]$
- (C) f''(x) is discontinuous at x = 1
- **(D)** f''(x) is continuous $\forall x \in [0, 2]$

SOLUTION: (ABC)

Continuity of f(x)

For $x \neq 1$, f(x) is a polynomial and hence is continuous.

At
$$x = 1$$
,

LHL =
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{x^{2}}{2} = \frac{1}{2}$$

RHL=
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \left(2x^{2} - 3x + \frac{3}{2} \right)$$

$$= 2 - 3 + \frac{3}{2} = \frac{1}{2}$$

$$f(1) = 2(1)^2 - 3(1) + \frac{3}{2} = \frac{1}{2}$$

$$\Rightarrow$$
 L.H.L. = R.H.L. = $f(1)$

Therefore, f(x) is continuous at x = 1.

Continuity of f'(x)

Let
$$g(x) = f'(x)$$

$$\Rightarrow g(x) = \begin{cases} x & ; & 0 \le x < 1 \\ 4x - 3 & ; & 1 \le x \le 2 \end{cases}$$

For $x \neq 1$, g(x) is linear polynomial and hence continuous.

At
$$x = 1$$
,

LHL =
$$\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} x = 1$$

RHL =
$$\lim_{x \to 1^{+}} g(x) = \lim_{x \to 1^{+}} (4x - 3) = 1$$

$$g(1) = 4 - 3 = 1$$

$$\Rightarrow$$
 LHL = RHL = $g(1)$

$$g(x) = f'(x)$$
 is continuous at $x = 1$.

Continuity of f''(x)

Let
$$h(x) = f''(x) = \begin{cases} 1 & \text{; } 0 \le x < 1 \\ 4 & \text{; } 1 \le x \le 2 \end{cases}$$

For $x \ne 1$, h(x) is continuous because it is a constant function.

At
$$x = 1$$
,

$$LHL = \lim_{x \to 1^{-}} h(x) = 1$$

$$RHL = \lim_{x \to 1^{+}} h(x) = 4$$

Thus $LHL \neq RHL$

$$\therefore$$
 h (x) is discontinuous at $x = 1$

Hence f(x) and f'(x) are continuous on

[0, 2] but f''(x) is discontinuous at x = 1.

Note: Continuity of f'(x) is same as differentiability of f(x).

Illustration - 42 If f(x) and g(x) are differentiable at x = a then the value of

$$\lim_{x \to a} \frac{f(x) g(a) - g(x) f(a)}{x - a} is:$$

(A)
$$f(a)g(a) - f'(a)g'(a)$$

(B)
$$f'(a) g(a) - g'(a) f(a)$$

(C)
$$f(a) g'(a) - f'(a) g(a)$$

SOLUTION: (B)

$$\lim_{x \to a} \frac{f(x) g(a) - g(x) f(a)}{x - a}$$

$$= \lim_{x \to a} \frac{f(x) g(a) - f(a) g(a) + f(a) g(a) - g(x) f(a)}{x - a}$$

$$= \lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} \right] g(a) - \lim_{x \to a} \left[\frac{g(x) - g(a)}{x - a} \right] f(a)$$

$$= f'(a) g(a) - g'(a) f(a)$$

Illustration - 43 Let f(x) be defined in the interval [-2, 2] such that

$$f(x) = \begin{cases} -1 & ; & -2 \le x \le 0 \\ x - 1 & ; & 0 < x \le 2 \end{cases}$$

and g(x) = f(|x|) + |f(x)|. The number of point where g(x) is not differentiable in (-2, 2) is:

3

- **(A)** 1
- **(B)**

(C)

(D)

SOLUTION: (B)

Consider f(|x|)

The given interval is $-2 \le x \le 2$

Replace x by |x| to get:

$$-2 \le |x| \le 2 \implies 0 \le |x| \le 2$$

Hence f(|x|) can be obtained by substituting |x| in place of x in x-1

[see definition of f(x)].

⇒
$$f(|x|) = |x| - 1; -2 \le x \le 2$$
 ... (i)

Consider |f(x)|

Now
$$|f(x)| = \begin{cases} |-1| & ; \quad -2 \le x \le 0 \\ |x-1| & ; \quad 0 < x \le 2 \end{cases}$$

$$\Rightarrow |f(x)| = \begin{cases} 1 & ; -2 \le x \le 0 \\ |x-1| & ; 0 < x \le 2 \end{cases} \dots (ii)$$

Adding (i) and (ii) we get:

$$f(|x|) + |f(x)| = \begin{cases} |x| - 1 + 1 & ; -2 \le x \le 0 \\ |x| - 1 + |x - 1| & ; 0 < x \le 2 \end{cases}$$

DIFFERENTIABILITY JEE MAIN

$$\Rightarrow g(x) = \begin{cases} |x| & ; \quad -2 \le x \le 0 \\ |x| - 1 + |x - 1| & ; \quad 0 < x \le 2 \end{cases}$$

On further simplification.

$$g(x) = \begin{cases} -x & ; & -2 \le x \le 0 \\ x - 1 + 1 - x & ; & 0 < x < 1 \\ x - 1 + x - 1 & ; & 1 \le x \le 2 \end{cases}$$

$$g(x) = \begin{cases} -x & ; & -2 \le x \le 0 \\ 0 & ; & 0 < x < 1 \\ 2x - 2 & ; & 1 \le x \le 2 \end{cases}$$

For $x \neq 0$ and $x \neq 1$, g(x) is a differentiable function because it is a linear polynomial.

At
$$x = 0$$

$$Lg'(0) = \lim_{h \to 0} \frac{g(0-h) - g(0)}{-h}$$
$$= \lim_{h \to 0} \frac{-(-h) - 0}{-h} = -1$$

$$Rg'(0) = Rg'(0) = \lim_{h \to 0} \frac{g(0+h) - g(0)}{h}$$
$$= \lim_{h \to 0} \frac{0 - 0}{h} = 0$$

Therefore g(x) is not differentiable at x = 0.

At
$$x = 1$$

 $\Rightarrow Lg'(0) \neq Rg'(0)$.

$$Lg'(1) = \lim_{h \to 0} \frac{g(1-h) - g(1)}{-h}$$
$$= \lim_{h \to 0} \frac{0-0}{-h} = 0$$

$$Rg'(1) = \lim_{h \to 0} \frac{g(1+h) - g(1)}{h}$$
$$= \lim_{h \to 0} \frac{2(1+h) - 2 - 0}{h} = 2$$
$$\Rightarrow Lg'(1) \neq Rg'(1).$$

Therefore g(x) in not differential at x = 1.

Hence g(x) is not differentiable at x = 0, 1 in (-2, 2).