
PREVIOUS YEARS' QUESTIONS

1. A charged particle q is placed at the centre O of cube of length L (ABCDEFGH). Another same charge g is placed at a distance L from O. Then the electric flux through ABCD is-[AIEEE-2002]

- (1) $q/4\pi \in L$
- (2) zero
- (3) $q/2\pi \in L$
- (4) $q/3\pi \in_{0} L$
- 2. A thin spherical conducting shell of radius R has a charge q. Another charge Q is placed at the centre of the shell. The electrostatic potential at a point P at a distance R/2 from the centre of the shell is-[AIEEE-2003]
 - (1) $\frac{2Q}{4\pi \in R}$
 - (2) $\frac{2Q}{4\pi \in_{0} R} \frac{2q}{4\pi \in_{0} R}$
 - (3) $\frac{2Q}{4\pi \in_0 R} + \frac{q}{4\pi \in_0 R}$
 - (4) $\frac{(q+Q)}{4\pi \in 0} \frac{2}{R}$
- 3. Two spherical conductors B and C having equal radii and carrying equal charges in them repel each other with a force F when kept apart at some some distance. A third spherical conductor having same radius as that of B but uncharged, is brought in contact with B, then brought in contact with C and finally removed away from both. The new force of repulsion between B and C is-[AIEEE-2004]

- (1) $\frac{F}{4}$ (2) $\frac{3F}{4}$ (3) $\frac{F}{8}$ (4) $\frac{3F}{8}$
- A charged particle q is shot towards another charged particle Q which is fixed, with a speed v. It approaches Q upto a closest distance r and then returns. If q was given a speed 2v, the closest distance of approach would be- [AIEEE-2004]

- (1) r
- (2) 2r
- (3) r/2
- (4) r/4

EXERCISE-II

5. Four charges equal to -Q are placed at the four corners of a square and a charge q is at its centre. If the system is in equilibrium, the value of q is-[AIEEE-2004]

 $(1) - \frac{Q}{4}(1 + 2\sqrt{2})$ (2) $\frac{Q}{4}(1 + 2\sqrt{2})$

- (3) $-\frac{Q}{2}(1+2\sqrt{2})$ (4) $\frac{Q}{2}(1+2\sqrt{2})$
- 6. Two point charges + 8q and - 2q are located at x = 0 and x = L respectively. The location of a point on the x-axis at which the net electric field due to these two point charges is zero is-

[AIEEE-2005]

(1) 2L

(2) $\frac{L}{4}$

(3) 8L

- (4) 4L
- 7. Two thin wire rings each having a radius R are placed at a distance d apart with their axes coinciding. The charges on the two rings are +q and -q. The potential difference between the centres of the two rings is-[AIEEE-2005]
 - $(1) \frac{qR}{4\pi \in d^2}$

(2)
$$\frac{q}{2\pi \in 0} \left[\frac{1}{R} - \frac{1}{\sqrt{R^2 + d^2}} \right]$$

(3) zero

(4)
$$\frac{q}{4\pi \in_0} \left[\frac{1}{R} - \frac{1}{\sqrt{R^2 + d^2}} \right]$$

- 8. An electric dipole is placed at an angle of 30° to a non-uniform electric field. The dipole will experience-[AIEEE-2006]
 - (1) a translational force only in the direction of the
 - (2) a translational force only in a direction normal to the direction of the field
 - (3) a torque as will as a translational force
 - (4) a torque only

ELECTROSTATICS

9. Two spherical conductors A and B of radii 1 mm and 2 mm are separated by a distance of 5 cm and are uniformly charged. If the spheres are connected by a conducting wire then in equilibrium condition, the ratio of the magnitude of the electric fields at the surfaces of spheres A and B is-

[AIEEE - 2006]

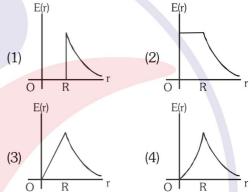
 $(1) \ 4 : 1$

(2) 1 : 2

- (3) 2 : 1
- (4) 1 : 4
- 10. An electric charge $10^{-3}\,\mu\text{C}$ is placed at the origin $(0,\ 0)$ of X-Y coordinate system. Two points A and B are situated at $(\sqrt{2}\ ,\ \sqrt{2}\)$ and $(2,\ 0)$ respectively. The potential difference between the points A and B will be-
 - (1) 9 V

(2) zero

(3) 2V


- (4) 4.5 V
- 11. Charges are placed on the vertices of a square

as shown. Let \overrightarrow{E} be the electric field and V the potential at the centre. If the charges on A and B are interchanged with those on D and C respectively, then-

- (1) \overrightarrow{E} remains unchanged, V changes
- (2) both \overrightarrow{E} and V change
- (3) \overrightarrow{E} and V remain unchanged
- (4) E changes and V remains unchanged
- 12. The potential at a point x (measured in μ m) due to some charges situated on the x-axis is given by : $V(x) = 20/(x^2 4) \text{ voltThe electric field E at } x = 4 \ \mu\text{m} \text{ is given by :} \qquad \text{[AIEEE-2007]}$
 - (1) $\frac{5}{3}$ V/µm and in the –ve x direction
 - (2) $\frac{5}{3}$ V/ μ m and in the +ve x direction
 - (3) $\frac{10}{9}$ V/µm and in the -ve x direction
 - (4) $\frac{10}{9}$ V/µm and in the +ve x direction

- **13.** Consider a neutral conducting sphere. A positive point charge is placed outside the sphere. The net charge on the sphere is then, **[IIT-JEE 2007]**
 - (1) negative and distributed uniformly over the surface of the sphere
 - (2) negative and appears only at the point on the sphere closest to the point charge
 - (3) negative and distributed non-uniformly over the entire surface of the sphere
 - (4) zero
- **14.** A thin spehrical shell of radius R has a charge Q spread uniformly over its surface. Which of the following graphs most closely represents the electric field E(r) produced by the shell in the range $0 \le r < \infty$, where r is the distance from the centre of the shell? **[AIEEE 2008]**

15. A charge Q is placed at each of the opposite corners of a square. A charge q is placed at each of the other two corners. If the net electrical force on Q is zero,

then $\frac{Q}{q}$ equals :- [AIEEE - 2009]

(1) 1 (2)
$$-\frac{1}{\sqrt{2}}$$
 (3) $-2\sqrt{2}$ (4) -1

This question contains Statement-1 and Statement-2. Of the four choices given after the statements, choose the one that best describes the two statements.

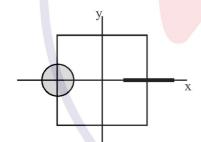
16. Statement–1 : For a charged particle moving from point P to point Q the net work done by an electrostatic field on the particle is independent of the path connecting point P to point Q.

Statement-2: The net work done by a conservative force on an object moving along closed loop is zero.

[AIEEE - 2009]

- (1) Statement–1 is true, Statement–2 is true; Statement–2 is not the correct explanation of Statement–1
- (2) Statement-1 is false, Statement-2 is true
- (3) Statement-1 is true, Statement-2 is false
- (4) Statement–1 is true, Statement–2 is true; Statement–2 is the correct explanation of Statement–1

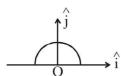
17. Two points P and Q are maintained at the potential of 10V and -4V, respectively. The work done in moving 100 electrons from P to Q is :-


- $(1) -2.24 \times 10^{-16} \text{ J}$
- (2) 2.24×10^{-16} J
- $(3) -9.60 \times 10^{-17} \text{ J}$
- (2) $2.24 \times 10^{-16} \text{ J}$ (4) $9.60 \times 10^{-17} \text{ J}$
- Let P(r) = $\frac{Q}{\pi P^4}$ r be the charge density distribution 18.

for a solid sphere of radius R and total charge Q. For a point 'p' inside the sphere at distance r_1 from the centre of the sphere, the magnitude of electric field is :-[AIEEE - 2009]

- (1) $\frac{Qr_1^2}{4\pi \in R^4}$
- $(2) \frac{Qr_1^2}{3\pi \in R^4}$

(3) 0


- $(4) \frac{Q}{4\pi \in r^2}$
- 19. A disk of radius a/4 having a uniformly distributed charge 6C is placed in the x-y plane with its centre at (-a/2, 0, 0). A rod of length a carrying a uniformly distributed charge 8 C is placed on the x-axis from x = a/4 to x = 5a/4. Two point charges -7 C and 3 C are placed at (a/4, -a/4, 0) and (-3a/4, 3a/4, 0), respectively. Consider a cubical surface formed by six surfaces $x = \pm a/2$, $y = \pm a/2$, $z = \pm a/2$. The electric flux through this cubical surface is [IIT-JEE 2009]

- $(1) \frac{-2C}{\varepsilon} \qquad (2) \frac{2C}{\varepsilon} \qquad (3) \frac{10C}{\varepsilon}$

- 20. A thin semi-circular ring of radius r has a positive charge q distributed uniformly over it. The net field
 - \vec{E} at the centre O is :-

[AIEEE - 2010]

- (1) $\frac{q}{2\pi^2 \epsilon_0 r^2} \hat{j}$
- (2) $\frac{q}{4\pi^2\epsilon_0 r^2}\hat{j}$
- $(3) -\frac{q}{4\pi^2 \varepsilon_0 r^2} \hat{j}$
- $(4) \frac{q}{2\pi^2 \epsilon_r r^2} \hat{j}$

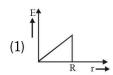
21. Let there be a spherically symmetric charge distribution with charge density varying as

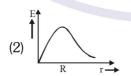
$$\label{eq:rho_fit} \rho(\textbf{r}) \,=\, \rho_0 \bigg(\frac{5}{4} - \frac{r}{R}\bigg) \ \text{ upto } r \,=\, R, \text{ and } \rho(\textbf{r}) \,=\, 0 \text{ for }$$

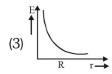
r > R, where r is the distance from the origin. The electric field at a distance r(r < R) from the origion is given by: [AIEEE - 2010]

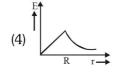
- $(1) \frac{\rho_0 r}{3\epsilon_0} \left(\frac{5}{4} \frac{r}{R} \right) \qquad (2) \frac{4\pi \rho_0 r}{3\epsilon_0} \left(\frac{5}{3} \frac{r}{R} \right)$
- (3) $\frac{\rho_0 r}{4\varepsilon} \left(\frac{5}{3} \frac{r}{R} \right)$ (4) $\frac{4\rho_0 r}{3\varepsilon} \left(\frac{5}{4} \frac{r}{R} \right)$
- 22. Two identical charged spheres are suspended by strings of equal lengths. The strings make an angle of 30° with each other. When suspended in a liquid of density $0.8 \,\mathrm{g}\,\mathrm{cm}^{-3}$, the angle remains the same. If density of the material of the sphere is 1.6 g cm⁻³, the dielectric constant of the liquid [AIEEE - 2010]
 - $(1)\ 1$
- (3) 3
- (4) 2
- 23. The electrostatic potential inside a charged spherical ball is given by $\phi = ar^2 + b$ where r is the distance from the centre; a, b are constant. Then the charge density inside the ball is :-[AIEEE - 2011]
 - (1) -24π a∈0
- (2) -6 a∈₀
- (3) -24π a∈or
- $(4) 6 a \in 0$ r
- 24. Two identical charged spheres suspended from a common point by two massless string of length ℓ are initially a distance $d(d \ll \ell)$ apart because of their mutual repulsion. The charge begins to leak from both the spheres at a constant rate. As a result the charges approach each other with a velocity v. Then as a function of distance x between them:-[AIEEE - 2011]
 - (1) $v \propto x^{1/2}$
- (2) $v \propto x$
- (3) $v \propto x^{-1/2}$
- (4) $v \propto x^{-1}$
- 25. Two positive charges of magnitude 'g' are placed at the ends of a side (side 1) of a square of side '2a'. Two negative charges of the same magnitude are kept at the other corners. Starting from rest, if a charge Q moves from the middle of side 1 to the centre of square, its kinetic energy at the centre of square is :-[AIEEE - 2011]
 - (1) $\frac{1}{4\pi \in 2} \frac{2qQ}{a} \left(1 \frac{1}{\sqrt{5}}\right)$
 - (2) zero
 - $(3)\frac{1}{4\pi} = \frac{2qQ}{a} \left(1 + \frac{1}{\sqrt{5}}\right)$
 - (4) $\frac{1}{4\pi} = \frac{2qQ}{a} \left(1 \frac{2}{\sqrt{5}}\right)$

26. This question has Statement-1 and Statement-2. Of the four choices given after the statements, choose the one that best describes the two statements.

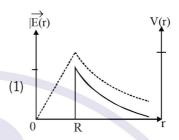

An insulating solid sphere of radius R has a uniformaly positive charge density ρ . As a result of this uniform charge distribution there is a finite value of electric potential at the centre of the sphere, at the surface of the sphre and also at a point out side the sphere. The electric potential at infinity is zero.

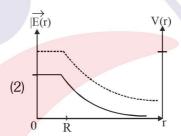

Statement-1: When a charge 'q' is taken from the centre to the surface of the sphere, its potential energy changes by $\frac{q\rho}{3 \in_0}$.

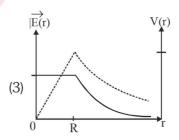

Statement-2: The electric field at a distance $r (r < R) \text{ from the centre of the sphere is } \frac{\rho r}{3 \in_0}.$

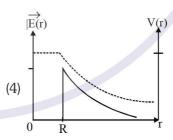

[AIEEE - 2012]

- (1) Statement-1 is true, Statement-2 is true and Statement-2 is the correct explanation of Statement-1.
- (2) Statement-1 is true, Statement-2 is true and Statement-2 is not the correct explanation of statement-1.
- (3) Statement-1 is true, Statement-2 is false
- (4) Statement-1 is false, Statement-2 is true.
- 27. In a uniformly charged sphere of total charge Q and radius R, the electric field E is plotted as a function of distance from the centre. The graph which would correspond to the above will be:- [AIEEE 2012]









28. Consider a thin spherical shell of radius R with its centre at the origin, carrying uniform positive surface charge density. The variation of the magnitude of the electric field $|\vec{E}(r)|$ and the electric potential V(r) with the distance r from the centre, is best represented by which graph? **[IIT-JEE 2012]**

- **29.** Let $[\in_0]$ denote the dimensional formula of the permittivity of vacuum. If M=mass, L=Length, T=Time and A=electric current, then :- [JEE(Main) 2013]
 - (1) $[\in_0] = [M^{-1} L^{-3} T^2 A]$
 - (2) $[\in_0] = [M^{-1} L^{-3} T^4 A^2]$
 - (3) $[\in_0] = [M^{-1} L^2 T^{-1} A^{-2}]$
 - (4) $[\in_0] = [M^{-1} L^2 T^{-1} A]$

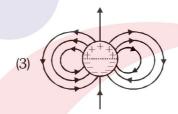
- 30. Two charges, each equal to q, are kept at x = -a and x = a on the x-axis. A particle of mass m and charge $q_0 = \frac{q}{2}$ is placed at the origin. If charge q_0 is given a small displacement $(y \ll a)$ along the y-axis, the net force acting on the particle is porportional to :- [JEE(Main) - 2013]
 - (1) y

- (2) -y (3) $\frac{1}{v}$ (4) $-\frac{1}{v}$
- A charge Q is uniformly distributed over a long rod 31. AB of length L as shown in the figure. The electric potential at the point O lying at a distance L from the end A is :-[JEE(Main) - 2013]

- $(1) \ \frac{Q}{8\pi \in_0 L}$
- $(2) \ \frac{3Q}{4\pi \in_0 L}$
- $(3) \frac{Q}{4\pi \in_{0} L \ln 2}$
- $(4) \frac{Q \ln 2}{4\pi \in L}$
- Assume that an electric field $\vec{E} = 30x^2\hat{i}$ exists in 32. space. Then the potential difference $V_A - V_O$, where V_O is the potential at the origin and V_A the potential at x = 2 m is :-[JEE(Main) - 2014]
 - (1) -80 V
- (2) 80 V
- (3) 120 V
- (4) 120 V
- **33**. A uniformally charged solid sphere of radius R has potential V_0 (measured with respect to ∞) on its surface. For this sphere the equipotential surfaces

with potentials $\frac{3V_0}{2}, \frac{5V_0}{4}, \frac{3V_0}{4}$ and $\frac{V_0}{4}$ have

radius R_1 , R_2 , R_3 and R_4 respectively. Then


[JEE(Main) - 2015]

- (1) $R_1 = 0$ and $R_2 < (R_4 R_3)$
- (2) $2R < R_4$
- (3) $R_1 = 0$ and $R_2 > (R_4 R_3)$
- (4) $R_1 \neq 0$ and $(R_2 R_1) > (R_4 R_3)$

A long cylindrical shell carries positive surface 34. charge σ in the upper half and negative surface charge $-\sigma$ in the lower half. The electric field lines around the cylinder will look like figure given in: (figures are schematic and not drawn to scale)

[JEE(Main) - 2015]

35. The region between two concentric spheres of radii 'a' and 'b', respectively (see figure), has volume

charge density $\rho = \frac{A}{r}$, where A is a constant and

r is the distance from the centre. At the centre of the spheres is a point charge Q. The value of A such that the electric field in the region between the spheres will be constant, is :-

[JEE(Main)-2016]

- (1) $\frac{2Q}{\pi a^2}$
- (2) $\frac{Q}{2\pi a^2}$
- (3) $\frac{Q}{2\pi(b^2-a^2)}$
- (4) $\frac{2Q}{\pi(a^2 b^2)}$

- An electric dipole has a fixed dipole moment \vec{p} , 36. which makes angle θ with respect to x-axis. When subjected to an electric field $\,\vec{E}_1 = E\hat{i}$, it experiences a torque $\,\vec{T}_{l} = \tau \hat{k}\,\,.$ When subjected to another electric field $\vec{E}_2 = \sqrt{3} E_1 \hat{j}$ it experiences torque $\vec{T}_2 = -\vec{T}_1$. The angle θ is : [JEE-Main-2017]
 - $(1)60^{\circ}$

 $(2) 90^{\circ}$

 $(3)\ 30^{\circ}$

 $(4) 45^{\circ}$

37. Three concentric metal shells A, B and C of respective radii a, b and c (a < b < c) have surface charge densities $+\sigma$, $-\sigma$ and $+\sigma$ respectively. The potential of shell B is :-[JEE(Main)-2018]

$$(1) \ \frac{\sigma}{\epsilon_0} \left[\frac{a^2 - b^2}{b} + c \right]$$

(1) $\frac{\sigma}{\varepsilon_0} \left[\frac{a^2 - b^2}{b} + c \right]$ (2) $\frac{\sigma}{\varepsilon_0} \left[\frac{b^2 - c^2}{b} + a \right]$

(3)
$$\frac{\sigma}{\varepsilon_0} \left[\frac{b^2 - c^2}{c} + a \right]$$
 (4) $\frac{\sigma}{\varepsilon_0} \left[\frac{a^2 - b^2}{a} + c \right]$

(4)
$$\frac{\sigma}{\varepsilon_0} \left[\frac{a^2 - b^2}{a} + c \right]$$

PREVIOUS YEARS QUESTIONS				ANSWER KEY			Exercise-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	3	4	4	2	1	2	3	3	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	4	4	1	3	4	2	1	1	4
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	3	4	2	3	1	4	4	4	2	1
Que.	31	32	33	34	35	36	37			
Ans.	4	1	1,2	3	2	1	1			