PREVIOUS YEARS' QUESTIONS

EXERCISE-II

- 1. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio C_P/C_V for the gas is
 [AIEEE 2002]
 - (1) 4/3

(2)2

(3) 5/3

- (4) 3/2
- **2.** If mass-energy equivalence is taken into account, when water is cooled to form ice, the mass of water should
 [AIEEE 2002]
 - (1) increase
 - (2) remain unchanged
 - (3) decrease
 - (4) first increase then decrease
- 3. Even carnot engine cannot give 100% efficiency because we cannot
 [AIEEE 2002]
 - (1) prevent radiation
 - (2) find ideal sources
 - (3) reach absolute zero temperature
 - (4) eliminate friction
- 4. "Heat cannot be itself flow from a body at lower temperature to a body at higher temperature" is a statement or consequence of- [AIEEE 2003]
 - (1) second law of thermodynamics
 - (2) conservation of momentum
 - (3) conservation of mass
 - (4) first law of thermodynamics
- 5. Which of the following parameters does not characterise the thermodynamic state of matter?

 [AIEEE 2003]
 - (1) Temperature
- (2) Pressure
- (3) Work
- (4) Volume
- **6.** A carnot engine takes 3×10^6 cal of heat from a reservoir at 627 °C and gives it to a sink at 27 °C. The work done by the engine is-

[AIEEE - 2003]

- (1) $4.2 \times 10^6 \text{ J}$
- (2) 8.4×10^6 J
- (3) $16.8 \times 10^6 \text{ J}$
- (4) zero

- **7.** Which of the following statements is correct for any thermodynamic system ? [AIEEE 2004]
 - (1) The internal energy changes in all processes
 - (2) Internal energy and entropy are state functions
 - (3) The change in entropy can never be zero
 - (4) The work done in an adiabatic process is always zero
- **8.** Which of the following is incorrect regarding the first law of thermodynamics ? [AIEEE 2005]
 - (1) It is applicable to any cyclic process
 - (2) It is a restatement of the principle of conservation of energy
 - (3) It introduces the concept of the internal energy
 - (4) It introduced the concept of the entropy
- 9. The temperature-entropy diagram of a reversible engine cycle is given in the figure. Its efficiency is
 [AIEEE 2005]

- (1) 1/2
- (2) 1/4
- (3) 1/3
- (4) 2/3
- 10. A system goes from A to B via two processes I and II as shown in figure. If ΔU_1 and ΔU_2 are the changes in internal energies in the processes I and II respectively then [AIEEE 2005]

- $(1) \Delta U_1 = \Delta U_2$
- (2) relation between ΔU_1 and ΔU_2 cannot be determined
- (3) $\Delta U_2 > \Delta U_1$
- $(4) \Delta U_2 < \Delta U_1$

11. The work of 146 kJ is performed in order to compress one kilo mole of a gas adiabatically and in this process the temperature of the gas increases by 7°C. The gas is- $(R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1})$

[AIEEE - 2006]

- (1) diatomic
- (2) triatomic
- (3) a mixture of monoatomic and diatomic
- (4) monoatomic
- 12. A carnot engine, having an efficiency of $\eta=1/10$ as heat engine, is used as a refrigetator. If the work done on the system is 10 J, the amount of energy absorbed from the reservoir at lower temperature is
 [AIEEE 2007]
 - (1) 99 J
- (2) 90 J

(3) 1 J

- (4) 100 J
- 13. When a system is taken from state i to state f along the path iaf, it is found that Q = 50 cal and W = 20 cal. Along the path ibf Q = 36 cal. W along the path ibf is
 [AIEEE 2007]

- (1) 6 cal
- (2) 16 cal
- (3) 66 cal
- (4) 14 cal

Directions : Question number 14, 15 and 16 are based on the following paragraph.

Two moles of helium gas are taken over the cycle ABCDA, as shown in the P-T diagram.

- **14.** Assuming the gas to be ideal the work done by the gas in taking it from A to B is :- [AIEEE 2009]
 - (1) 400 R
- (2) 500 R
- (3) 200 R
- (4) 300 R

- **15.** The work done on the gas in taking it from D to A is:- [AIEEE 2009]
 - (1) -690 R
- (2) +690 R
- (3) -414 R
- (4) + 414 R
- **16.** The net work done by the gas in the cycle ABCDA is:- [AIEEE 2009]
 - (1) 1076 R
- (2) 1904 R

- (3) Zero
- (4) 276 R
- 17. A diatomic ideal gas is used in a carnot engine as the working substance. If during the adiabatic expansion part of the cycle the volume of the gas increases from V to 32 V, the efficiency of the engine is:
 [AIEEE 2010]
 - (1) 0.25
- (2) 0.5
- (3) 0.75
- (4) 0.99
- **18.** A Carnot engine operating between temperatures

 T_1 and T_2 has efficientcy $\frac{1}{6}$. When T_2 is lowered

by 62 K, its efficiency increases to $\frac{1}{3}$. Then T₁ and T₂ are, respectively: [AIEEE - 2011]

- (1) 330 K and 268 K
- (2) 310 K and 248 K
- (3) 372 K and 310 K
- (4) 372 K and 330 K
- 19. A thermally insulated vessel contains an ideal gas of molecular mass M and ratio of specific heats γ. It is moving with speed v and is suddenly broght to rest. Assuming no heat is lost to the surroundings, its temperature increases by :- [AIEEE 2011]

$$(1) \ \frac{\gamma M v^2}{2R} K$$

(2)
$$\frac{\left(\gamma-1\right)}{2R}Mv^2K$$

(3)
$$\frac{\left(\gamma-1\right)}{2\left(\gamma+1\right)R}Mv^{2}K$$

$$(4) \frac{(\gamma - 1)}{2\gamma R} M v^2 K$$

THERMODYNAMICS

- 20. 100 g of water is heated from 30°C to 50°C Ignoring the slight expansion of the water, the change in its internal energy is (specific heat of water is 4184 J/kg/K):- [AIEEE 2011]
 - (1) 84 kJ
- (2) 2.1 kJ
- (3) 4.2 kJ
- (4) 8.4 kJ
- **21.** A container with insulating walls is divided into two equal parts by a partition fitted with a valve. One part is filled with an ideal gas at a pressure P and temperature T, whereas the other part is completely evacuated. If the valve is suddenly opened, the pressure and temperature of the gas will be:
 [AIEEE 2011]
 - (1) $\frac{P}{2}$, T
- (2) $\frac{P}{2}, \frac{T}{2}$

(3) P, T

- (4) $P, \frac{T}{2}$
- 22. Helium gas goes through a cycle ABCDA (consisting of two isochoric and two isobaric lines) as shown in figure. Efficiency of this cycle is nearly (Assume the gas to be close to ideal gas):
 [AIEEE 2012]

- (1) 12.5%
- (2) 15.4%
- (3) 9.1%
- (4) 10.5%
- **23.** A Carnot engine, whose efficiency is 40% takes in heat from a source maintained at a temperature of 500 K. It is desired to have an engine of efficiency 60%. Then, the intake temperature for the same exhaust (sink) temperature must be :- [AIEEE 2012]
 - (1) 600 K
 - (2) efficiency of Carnot engine cannot be made larger than 50%
 - (3) 1200 K
 - (4) 750 K

24. One mole of diatomic ideal gas undergoes a cyclic process ABC as shown in figure. The process BC is adiabatic. The temperatures at A, B and C are 400 K, 800 K and 600 K respectively. Choose the correct statement: [JEE(Main)-2014]

- (1) The change in internal energy in the process AB is $-350 \, \text{R}$.
- (2) The change in internal energy in the process BC is -500R
- (3) The change in internal energy in whole cyclic process is 250 R.
- (4) The change in internal energy in the process CA is 700 R.
- **25.** Consider a spherical shell of radius R at temperature T. The black body radiation inside it can be considered as an ideal gas of photons with internal energy per unit volume $u = \frac{U}{V} \propto T^4$ and pressure $p = \frac{1}{3} \left(\frac{U}{V} \right)$. If the shell now undergoes an adiabatic expansion the relation between T and R is -

[JEE(Main)-2015]

(1) T
$$\propto \frac{1}{R}$$

$$(2) T \propto \frac{1}{R^3}$$

(3) T
$$\propto e^{-R}$$

(4) T
$$\propto e^{-3R}$$

- **26.** A solid body of constant heat capacity 1 J°/C is being heated by keeping it in contact with reservoirs in two ways [JEE(Main)-2015]
 - (i) Sequentially keeping in contact with 2 reservoirs such that each reservoir supplies same amount of heat.
 - (ii) Sequentially keeping in contact with 8 reservoirs such that each reservoir supplies same amount of heat. In both the cases body is brought from initial temperature 100°C to final temperature 200°C. Entropy change of the body in the two cases respectively is -
 - (1) ln2, 2ln2
- (2) 2ln2, 8ln2
- (3) ln2, 4ln2
- (4) ln2, ln2

Consider an ideal gas confined in an isolated closed **27**. chamber. As the gas undergoes an adiabatic expansion, the average time of collision between molecules increases as V^q , where V is the volume

of the gas. The value of q is :-
$$\left(\gamma = \frac{C_p}{C_v}\right)$$

[JEE(Main)-2015]

$$(1)\frac{\gamma+1}{2}$$

$$(2)\frac{\gamma-1}{2}$$

$$(3)\frac{3\gamma + 5}{6}$$

$$(1)\frac{\gamma+1}{2}$$
 $(2)\frac{\gamma-1}{2}$ $(3)\frac{3\gamma+5}{6}$ $(4)\frac{3\gamma-5}{6}$

'n' moles of an ideal gas undergoes a process 28. $A \rightarrow B$ as shown in the figure. The maximum temperature of the gas during the process will be: [JEE(Main)-2016]

$$(1)\frac{9P_{0}V_{0}}{nP_{0}}$$

$$(2)\frac{9P_0V_0}{4nR}$$

(1)
$$\frac{9 P_0 V_0}{nR}$$
 (2) $\frac{9 P_0 V_0}{4nR}$ (3) $\frac{3 P_0 V_0}{2nR}$ (4) $\frac{9 P_0 V_0}{2nR}$

$$(4)\frac{9P_0V_0}{2nR}$$

29. An ideal gas undergoes a quasi static, reversible process in which its molar heat capacity C remains constant. If during this process the relation of pressure P and volume V is given by $PV^n = constant$, then n is given by (Here C_P and C_V are molar specific heat at constant pressure and constant volume, respectively):-[JEE(Main)-2016]

$$(1) n = \frac{C - C_V}{C - C_P}$$

$$(2) n = \frac{C_P}{C_V}$$

$$(3) n = \frac{C - C_P}{C - C_V}$$

(4)
$$n = \frac{C_P - C}{C - C_V}$$

30. Two moles of an ideal monoatomic gas occupies a volume V at 27°C. The gas expands adiabatically to a volume 2V. Calculate (a) the final temperature of the gas and (b) change in its internal energy.

[JEE-Main 2018]

PREVIOUS YEARS QUESTIONS				ANSWER KEY			Exercise-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	4	3	3	1	3	2	2	4	3	1
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	1	2	1	1	4	4	3	3	2	4
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	4	2	1	4	1	2	3	2