The vectors \vec{A} and \vec{B} are such that 1. $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$. The angle between vectors \vec{A} and B is -

AIPMT 2006

- (1) 90°
- $(2) 60^{\circ}$
- $(3)75^{\circ}$
- $(4)45^{\circ}$

AIPMT 2007

If $|\vec{A} \times \vec{B}| = \sqrt{3} |\vec{A} \cdot \vec{B}|$, then the value of $|\vec{A} + \vec{B}|$ 2. is:

(1)
$$\left(A^2 + B^2 + \frac{AB}{\sqrt{3}}\right)^{1/2}$$
 (2) A + B

(3)
$$(A^2 + B^2 + \sqrt{3} AB)^{1/2}$$
 (4) $(A^2 + B^2 + AB)^{1/2}$

$$(4) (A^2+B^2+AB)^{1/2}$$

AIPMT 2010

3. Six vectors, \vec{a} through \vec{f} have the magnitudes and directions indicated in the figure. Which of the following statements is true?

- (1) $\vec{b} + \vec{e} = \vec{f}$
- (2) $\vec{b} + \vec{c} = \vec{f}$
- (3) $\vec{d} + \vec{c} = \vec{f}$
- (4) $\vec{d} + \vec{e} = \vec{f}$

Re-AIPMT 2015

If vectors $\vec{A} = \cos \omega t \hat{i} + \sin \omega t \hat{j}$ and 4.

$$\vec{B} = \cos \frac{\omega t}{2} \hat{i} + \sin \frac{\omega t}{2} \hat{j}$$

are functions of time, then the value of t at which they are orthogonal to each other is: (1) t = 0

- (2) $t = \frac{\pi}{4\omega}$
- (3) $t = \frac{\pi}{2\omega}$
- (4) $t = \frac{\pi}{6}$

NEET-I 2016

- 5. If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is:-
 - $(1) 0^{\circ}$
- $(2)90^{\circ}$
- $(3) 45^{\circ}$
- (4) 180°

NEET(UG) 2019

A particle moving with velocity \vec{V} is acted by three forces shown by the vector triangle PQR. The velocity of the particle will:

- (1) increase
- (2) decrease
- (3) remain constant
- (4) change according to the smallest force **OR**

RE-NEET(UG) 2022

- If $\vec{F} = 2\hat{i} + \hat{j} \hat{k}$ and $\vec{r} = 3\hat{i} + 2\hat{j} 2\hat{k}$, then the 7. scalar and vector products of Fand r have the magnitudes respectively as:
 - (1) 5, $\sqrt{3}$
- (2) 4, $\sqrt{5}$
- (3) 10, $\sqrt{2}$
- (4) 10, 2

EXERCISE-II (Previous Year Questions)

Question	1	2	3	4	5	6	7
Answer	1	4	4	4	2	3	3

1. Given below are two statements: one is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**.

Assertion (A): Current has magnitude as well as direction but still not considered as vector.

Reason (R): Current do not follow vector algebra.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both **(A)** and **(R)** are true and **(R)** is the correct explanation of **(A)**.
- (2) Both **(A)** and **(R)** are true and **(R)** is NOT the correct explanation of **(A)**.
- (3) **(A)** is true but **(R)** is false.
- (4) **(A)** is false but **(R)** is true.
- 2. Given below are two statements: one is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**.

Assertion (A): Definite integral of a function is defined as area under the curve.

Reason (R): Definite integral of a function is always positive.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (2) Both **(A)** and **(R)** are true and **(R)** is NOT the correct explanation of **(A)**.
- (3) **(A)** is true but **(R)** is false.
- (4) **(A)** is false but **(R)** is true.
- 3. Two vectors \vec{A} & \vec{B} have equal magnitude equal to Z. If angle between \vec{A} & \vec{B} is 60° then match the following:
 - (A) $|\vec{A} + \vec{B}|$
- (P) $\frac{\sqrt{3}}{2}$ Z²
- (B) $|\vec{A} \vec{B}|$
- (Q) Z
- (C) $\vec{A} \cdot \vec{B}$
- (R) $\sqrt{3}$ Z
- (D) $|\vec{A} \times \vec{B}|$
- (S) None
- (1) (A)-(R), (B)-(S), (C)-(Q), (D)-(P)
- (2) (A)-(R), (B)-(Q), (C)-(S), (D)-(P)
- (3) (A)-(P), (B)-(Q), (C)-(R), (D)-(S)
- (4) (A)-(Q), (B)-(P), (C)-(S), (D)-(P)

4. Match the following

(A) $\vec{a} + \vec{b} = \vec{c}$

(B) $\vec{a} - \vec{c} = \vec{b}$

(C) $\vec{b} - \vec{a} = \vec{c}$

(D) $\vec{a} + \vec{b} + \vec{c} = \vec{0}$

- (1) (A)-(S), (B)-(R), (C)-(P), (D)-(Q)
- (2) (A)-(R), (B)-(S), (C)-(Q), (D)-(P)
- (3) (A)-(P), (B)-(Q), (C)-(R), (D)-(S)
- (4) (A)-(S), (B)-(R), (C)-(Q), (D)-(P)
- **5.** Given below are two statements :

Statement I : Resultant of 2 forces of magnitude 4N and 5N can be 2N in magnitude.

Statement II: $||\vec{a}| - |\vec{b}|| \le |\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both statement I and statement II are correct.
- (2) Statement I is correct and statement II is incorrect.
- (3) Statement I is incorrect and statement II is correct.
- (4) Both statements I and statements II are incorrect.
- **6.** Given below are two statements :

Statement I : Two null vector have same direction.

Statement II: $\vec{A} \times \vec{B}$ lies in the plane of $\vec{A} + \vec{B}$

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both statement I and statement II are correct.
- (2) Statement I is correct and statement II is incorrect.
- (3) Statement I is incorrect and statement II is correct.
- (4) Both statements I and statements II are incorrect.
- 7. Which of the following is correct:
 - (i) $\vec{A} \cdot \vec{B}$ is a vector quantity
 - (ii) $\vec{A} \times \vec{B}$ is perpendicular to plane of $\vec{A} + \vec{B}$
 - (iii) For two orthogonal vectors $\vec{A} \cdot \vec{B} = 0$
 - (iv)If vectors are parallel or antiparallel, then $\vec{A} \times \vec{B} = \vec{0}$
 - (1) (i) only
 - (2) (i) & (ii)
 - (2) (iii) & (iv) only
 - (4) (ii), (iii) & (iv)
- 8. Which of the following is incorrect:
 - (i) In third quadrant $\sin \theta$ of angle is positive
 - (ii) For an increasing function $\frac{dy}{dx} > 0$
 - (iii) Definite integral of a function gives magnitude of area between given limits
 - (1) (i) only
- (2) (ii) only
- (3) (i) & (iii)
- (4) (iii) only
- 9. Given below are two statements:

Statement I: For every small angle θ , we may use approximation $\sin \theta \approx \theta \approx \tan \theta$.

Statement II: For very small angle θ , the hypotenuse and the become base approximately of the same length.

- (1) Statement-I is true, Statement-II is true; Statement-II is a correct explanation for Statement-I.
- (2) Statement-I is true, Statement-II is true; Statement-II is not a correct explanation for Statement-I.
- (3) Statement-I is true, Statement-II is false.
- (4) Statement-I is false, Statement-II is true.

10. Suggest suitable match between function given in the first column and its description given in the second column.

Column-I Column-II

- (A) $\sin(390^{\circ})$
- (P) Positive
- (B) $\sin(-30^{\circ})$
- (Q) Negative
- (C) cos 120°
- (R) Zero
- (D) tan (-120°)
- (S) Modulus is greater than one
- (T) Modulus is less than one
- (1) $A \rightarrow PT$, $B \rightarrow QT$, $C \rightarrow QT$, $D \rightarrow PS$
- (2) $A \rightarrow PT$, $B \rightarrow QS$, $C \rightarrow QT$, $D \rightarrow PS$
- (3) $A \rightarrow QT$, $B \rightarrow QS$, $C \rightarrow PT$, $D \rightarrow PS$
- (4) $A \rightarrow QS$, $B \rightarrow PT$, $C \rightarrow QT$, $D \rightarrow PS$
- Refer the given figure and identify correct 11. statement(s)
 - (A) Distance of A from x-axis is $5\sqrt{3}$ cm.
 - (B) Distance of B from x-axis is 6 cm.
 - (C) Distance of A from y-axis is 5 cm.
 - (D) Distance of B from y-axis is 8 cm.

Options:-

- (1) A, C
- (2) A, D
- (3) A, B, C
- (4) A, B, C, D
- 12. In the following graph, several straight lines are shown. Arrange them in order of increasing slope modulus

Options:-

- (1) C, B, A, D
- (2) C, B, D, A
- (3) A, D, B,C
- (4) D, A, B, C

Three forces \vec{F}_1 , \vec{F}_2 and \vec{F}_3 are represented as 13. shown. Each of them is of equal magnitude.

Column I

Column II

(Combination) (Approximate Direction)

(A)
$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3$$

(B)
$$\vec{F}_1 - \vec{F}_2 + \vec{F}_3$$
 (Q)
(C) $\vec{F}_1 - \vec{F}_2 - \vec{F}_3$ (R)

(C)
$$\vec{F}_1 - \vec{F}_2 - \vec{F}_3$$

(D)
$$\vec{F}_2 - \vec{F}_1 - \vec{F}_3$$
 (S)

Options:-

- (1) $A \rightarrow R$, $B \rightarrow Q$, $C \rightarrow P$, $D \rightarrow S$
- (2) $A \rightarrow Q$, $B \rightarrow P$, $C \rightarrow R$, $D \rightarrow S$
- (3) $A \rightarrow Q$, $B \rightarrow R$, $C \rightarrow P$, $D \rightarrow S$
- (4) $A \rightarrow S$, $B \rightarrow P$, $C \rightarrow R$, $D \rightarrow Q$
- 14. Which of the following statement is/are true?
 - (a) Two vectors of unequal magnitude can add up to zero.
 - (b) Three vectors of unequal magnitude can add up to zero, if they lie in a plane.
 - (c) Three vectors of unequal magnitude can added upto zero, if they do not lie in same plane.

Options:-

- (1) Only a
- (2) a, b and c
- (3) only b
- (4) only c

EXERCISE-III (Analytical Questions)

ANSWER KEY

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Answer	1	3	2	1	1	4	4	3	1	1	4	2	3	3