COORDINATION COMPOUND

PYQ

AIPMT 2006

- 1. Copper sulphate dissolves in excess of KCN to give
 - $(1) Cu(CN)_2$
- (2) CuCN
- (3) $[Cu(CN)_4]^{3-}$
- (4) $[Cu(CN)_4]^{2-}$
- 2. [Co $(NH_3)_4 (NO_2)_2$] Cl exhibits
 - (1) linkage isomerism, geometrical isomerism and optical isomerism
 - (2) linkage isomerism, ionization isomerism and optical isomerism
 - (3) linkage isomerism, ionization isomerism and geometrical isomerism
 - (4) ionization isomerism, geometrical isomerism and optical isomerism

AIPMT 2007

- 3. Which of the following will give a pair of enantiomers
 - (1) $[Cr(NH_3)_6][Co(CN)_6]$
 - (2) $[Co(en)_2Cl_2]Cl$
 - (3) $[Pt(NH_3)_4][PtCl_6]$
 - (4) $[Co(NH_3)_4Cl_2]NO_2$
- The d electron configurations of Cr²⁺, Mn²⁺, 4. Fe^{2+} and Ni^{2+} are $3d^4$, $3d^5$, $3d^6$ and $3d^8$ respectively. Which one of the following aqua complexes will exhibit the minimum paramagnetic behaviour
 - (1) $[Fe(H_2O)_6]^{2+}$
- (2) $[Ni(H_2O)_6]^{2+}$
- (3) $[Cr(H_2O)_6]^{2+}$
- (4) [Mn(H₂O)₆]²⁺

AIPMT 2008

5. Which of the following complexes exhibits the highest paramagnetic behaviour?

Where gly = glycine, en = ethylenediamine and bpy = bipyridyl (At. No. Ti = 22, V = 23, Fe = 26, Co = 27

- (1) $[Co(OX)_2(H_2O)_2]^{-}$
- (2) $[Ti(NH_3)_6]^{3+}$
- (3) $[V(gly)_2(OH)_2(NH_3)_2]^+$
- (4) [Fe(en) (bpy) $(NH_3)_2$]²⁺

- 6. In which of the following coordination entities the magnitude of Δo (CFSE in octahedral field) will be maximum?
 - (1) $[Co(CN)_6]^{3-}$
- (2) $[Co(C_2O_4)_3]^{3-}$
- (3) $[Co(H_2O)_6]^{3+}$
- (4) $[Co(NH_3)_6]^{3+}$

AIPMT 2009

- 7. Which of the following complex ions is expected to absorb visible light?
 - (1) $[Zn(NH_3)_6]^{2+}$
 - (2) $[Sc(H_2O)_3(NH_3)_3]^{3+}$
 - (3) $[Ti(en)_2(NH_3)_2]^{4+}$
 - (4) $[Cr(NH_3)_6]^{3+}$
- Out of TiF_6^{2-} , CoF_6^{3-} , Cu_2Cl_2 and $NiCl_4^{2-}$ 8. colourless species are:
 - (1) CoF_6^{3-} and $NiCl_4^{2-}$ (2) TiF_6^{2-} and CoF_6^{2-}

 - (3) Cu_2Cl_2 and $NiCl_4^{2-}$ (4) TiF_6^{2-} and Cu_2Cl_2
- Which of the following does not show optical 9. isomerism?
 - (1) $[Co(en)_3]^{3+}$
 - (2) $[Co(en)_2Cl_2]^+$
 - (3) $[Co(NH_3)_3Cl_3]^0$
 - (4) $[Co(en)Cl_2(NH_3)_2]^+$
- Which one of the following complexes is **not** 10. expected to exhibit isomerism:-
 - (1) [Pt (NH₃)₂ Cl₂]
 - (2) $[NiCl_4]^{2-}$
 - (3) [Ni (en)₃] $^{2+}$
 - (4) $[Ni(NH_3)_4(H_2O)_2]^{2+}$

AIPMT 2010

- 11. Which of the following complex ion is not expected to absorb visible light?
 - (1) $[Ni(H_2O)_6]^{2+}$
- (2) $[Ni(CN)_4]^{2-}$
- (3) $[Cr(NH_3)_6]^{3+}$
- (4) $[Fe(H_2O)_6]^{2+}$
- **12.** The existence of two different coloured complexes with the composition of $[Co(NH_3)_4Cl_2]^+$ is due to:-
 - (1) Ionization isomerism
 - (2) Linkage isomerism
 - (3) Geometrical isomerism
 - (4) Coordination isomerism

- Crystal field stabilization energy for high spin **13**. d⁴ octahedral complex is:-
 - (1) $-0.6 \Delta_0$
- (2) $-1.8 \Delta_0$
- (3) $-1.6 \Delta_0 + P$
- $(4) -1.2 \Delta_0$

AIPMT Pre. 2011

- Of the following complex ions, which is 14. diamagnetic in nature?
 - (1) $[NiCl_4]^{2-}$
- (2) $[Ni(CN)_4]^{2-}$
- (3) $[CuCl_4]^{2-}$
- (4) $[CoF_6]^{3-}$
- **15**. The complex [Co(NH₃)₆][Cr(CN)₆] and [Cr(NH₃)₆] [Co(CN)₆] are the examples of which type of isomerism?
 - (1) Linkage isomerism
 - (2) Ionization isomerism
 - (3) Coordination isomersim
 - (4) Geometrical isomerism
- The complex [Pt(Py)(NH₃)BrCl] will have how **16**. many geometrical isomers?
 - (1) 3
- (2)4
- (3)0
- (4)2

AIPMT Mains 2011

- 17. Which of the following carbonyls will have the strongest C-O bond?
 - $(1) [Fe(CO)_5]$
- (2) $[Mn(CO)_6]^+$
- (3) $[Cr(CO)_6]$
- $(4) [V(CO)_6]$
- Which of the following complex compounds 18. will exhibit highest paramagnetic behaviour:-(At. No. Ti = 22, Cr = 24, Co = 27, Zn = 30)
 - (1) $[Zn(NH_3)_6]^{2+}$
 - (2) $[Ti(NH_3)_6]^{3+}$
 - (3) $[Cr(NH_3)_6]^{3+}$ (4) $[Co(NH_3)_6]^{3+}$

AIPMT Pre. 2012

- Which one of the following is an outer orbital 19. complex and exhibits paramagnetic behaviour?
 - (1) $[Cr(NH_3)_6]^{3+}$
- (2) $[Co(NH_3)_6]^{3+}$
- (3) $[Ni(NH_3)_6]^{2+}$ (4) $[Zn(NH_3)_6]^{2+}$

AIPMT Mains 2012

20. Red precipitate is obtained when ethanol solution of dimethylglyoxime is added to ammoniacal Ni(II). Which of the following statements is not true?

dimethylglyoxime =
$$H_3C - C = N$$
 $H_3C - C = N$
 OH
 OH

- (1) Red complex has a tetrahedral geometry.
- (2) Dimethylglyoxime functions as bidentate ligand.
- (3) Red complex has a square planar geometry.
- (4) Complex has symmetrical H-bonding.
- 21. Low spin complex of d⁶-cation in an octahedral field will have the following energy:-

 $(\Delta_0 = \text{Crystal field splitting energy in an})$ octahedral field, P = Electron pairing energy)

- (1) $\frac{-2}{5} \Delta_0 + 2P$ (2) $\frac{-2}{5} \Delta_0 + P$ (3) $\frac{-12}{5} \Delta_0 + P$ (4) $\frac{-12}{5} \Delta_0 + 3P$

NEET-UG 2013

- 22. A magnetic moment of 1.73 BM will be shown by one among the following:-
 - (1) $[CoCl_6]^{4-}$
- (2) $[Cu(NH_3)_4]^{2+}$
- (3) [Ni(CN)₄]²⁻
- (4) TiCl₄

AIPMT 2014

- 23. Which of the following complexes is used to be as an anticancer agent?
 - (1) mer- $[Co(NH_3)_3Cl_3]$ (2) cis- $[PtCl_2(NH_3)_2]$
 - (3) $\operatorname{cis-K_2}[\operatorname{PtCl_2Br_2}]$
- (4) Na₂CoCl₄

AIPMT 2015

- Cobalt (III) chloride forms several octahedral 24. complexes with ammonia. Which of the following will not give test of chloride ions with silver nitrate at 25°C?
 - (1) CoCl₃·4NH₃
- (2) $CoCl_3 \cdot 5NH_3$
- (3) CoCl₃·6NH₃
- (4) CoCl₃·3NH₃
- 25. Which of these statements about [Co(CN)₆]³⁻ is
 - (1) $[Co(CN)_6]^{3-}$ has four unpaired electrons and will be in a low-spin configuration.
 - (2) $[Co(CN)_6]^{3-}$ has four unpaired electrons and will be in a high spin configuration.
 - (3) $[Co(CN)_6]^{3-}$ has no unpaired electrons and will be in a high-spin configuration.
 - (4) $[Co(CN)_6]^{3-}$ has no unpaired electrons and will be in a low-spin configuration.

Re-AIPMT 2015

- The name of complex ion, $[Fe(CN)_6]^{3-}$ is :-26.
 - (1) Tricyanoferrate (III) ion
 - (2) Hexacyanidoferrate (III) ion
 - (3) Hexacyanoiron (III) ion
 - (4) Hexacyanitoferrate (III) ion
- 27. The hybridization involved in complex $[Ni(CN)_4]^{2-}$ is (At.No. Ni = 28)

 - (1) d^2sp^2 (2) d^2sp^3
- (3) dsp²
- $(4) sp^{3}$
- 28. The sum of coordination number and oxidation number of the metal M in the complex $[M(en)_2(C_2O_4)]Cl$ (where en is ethylenediamine) is:-
 - (1)7
- (2)8
- (3)9
- (4)6
- Number of possible isomers for the complex 29. $[Co(en)_2Cl_2]$ Cl will be : (en = ethylenediamine) (1)3(3)2(4)1(2)4

NEET-I 2016

- 30. Which of the following has longest C-O bond length? (Free C-O bond length in CO is 1.128Å).
 - (1) Ni(CO)₄
- (2) $[Co(CO)_4]^-$
- (3) $[Fe(CO)_4]^{2-}$
- $(4) [Mn(CO)_6]^+$

NEET(UG) 2017

- An example of a sigma bonded organometallic 31. compound is:
 - (1) Grignard's reagent (2) Ferrocene
 - (3) Cobaltocene
- (4) Ruthenocene
- 32. Pick out the correct statement with respect to $[Mn(CN)_6]^{3-}$:-
 - (1) It is sp^3d^2 hybridised and tetrahedral
 - (2) It is d²sp³ hybridised and octahedral
 - (3) It is dsp² hybridised and square planar
 - (4) It is sp³d² hybridised and octahedral
- 33. Correct increasing order for the wavelengths of absorption in the visible region the complexes of Co³⁺ is:-
 - (1) $[Co(H_2O)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$
 - (2) $[Co(H_2O)_6]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$
 - (3) $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(H_2O)_6]^{3+}$
 - (4) $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$

NEET(UG) 2018

- The type of isomerism shown by the complex 34. $[CoCl_2(en)_2]$ is
 - (1) Geometrical isomerism
 - (2) Coordination isomerism
 - (3) Ionization isomerism
 - (4) Linkage isomerism
- **35**. The geometry and magnetic behaviour of the complex [Ni(CO)₄] are
 - (1) Square planar geometry and diamagnetic
 - (2) Tetrahedral geometry and diamagnetic
 - (3) Square planar geometry and paramagnetic
 - (4) Tetrahedral geometry and paramagnetic
- 36. Iron carbonyl, Fe(CO)₅ is
 - (1) Tetranuclear
- (2) Mononuclear
- (3) Trinuclear
- (4) Dinuclear

NEET(UG) 2019

- 37. What is the **correct** electronic configuration of the central atom in K₄[Fe(CN)₆] based on crystal field theory?

- (1) $t_{2\sigma}^4 e_{\sigma}^2$ (2) $t_{2\sigma}^6 e_{\sigma}^0$ (3) $e^3 t_2^3$ (4) $e^4 t_2^2$

NEET(UG) 2019 (ODISHA)

- 38. The Crystal Field Stabilisation Energy (CFSE) for [CoCl₆]⁴⁻ is 18000 cm⁻¹. The CFSE for [CoCl₄]²⁻ will be-
 - (1) 6000 cm⁻¹
- (2) 16000 cm⁻¹
- (3) 18000 cm⁻¹
- (4) 8000 cm⁻¹

NEET(UG) 2020

- 39. Which of the following is the correct order of increasing field strength of ligands to form coordination compounds?
 - (1) $CN^- < C_2O_4^{2-} < SCN^- < F^-$
 - (2) $SCN^- < F^- < C_2O_4^{2-} < CN^-$
 - (3) $SCN^- < F^- < CN^- < C_2O_4^{2-}$
 - (4) $F^- < SCN^- < C_2O_4^{2-} < CN^-$
- 40. Urea reacts with water to form A which will decompose to form B. B when passed through Cu²⁺ (aq), deep blue colour solution C is formed. What is the formula of C from the following?
 - (1) $CuCO_3 \cdot Cu(OH)_2$
- (2) CuSO₄
- (3) $[Cu(NH_3)_4]^{2+}$
- (4) Cu(OH)₂

NEET(UG) 2021

- **41.** Ethylene diaminetetraacetate (EDTA) ion is:
 - (1) Hexadentate ligand with four "O" and two "N" donor atoms
 - (2) Unidentate ligand
 - (3) Bidentate ligand with two "N" donor atoms
 - (4) Tridentate ligand with three "N" donor atoms

42. Match List-I with List-II

	List-I	List-II			
(a)	[Fe(CN) ₆] ³⁻	(i)	5.92 BM		
(b)	$[Fe(H_2O)_6]^{3+}$	(ii)	0 BM		
(c)	[Fe(CN) ₆] ⁴⁻	(iii)	4.90 BM		
(d)	[Fe(H ₂ O) ₆] ²⁺	(iv)	1.73 BM		

Choose the **correct** answer from the options given below

- (1) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)
- (2) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
- (3) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)
- (4) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)

EXERCISE-II (Previous Year Questions) ANSWER KEY												KEY			
Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Answer	3	3	2	2	2	1	4	4	3	2	2	3	1	2	3
Question	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Answer	1	2	3	3	1	4	2	2	4	4	2	3	3	1	3
Question	31	32	33	34	35	36	37	38	39	40	41	42			
Answer	1	2	4	1	2	2	2	4	2	3	1	4			

1. Given below are two statements :

Statement-I: Complex $[Fe(H_2O)_5(NO)]SO_4$ is paramagnetic.

Statement-II: The Fe in Complex $[Fe(H_2O)_5(NO)]SO_4$ has three unpaired electrons.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement-I and Statement-II are correct.
- (2) Statement-I is correct but Statement-II is incorrect.
- (3) Both Statement-I and II are incorrect.
- (4) Statement-I is incorrect but Statement-II is correct.
- **2.** Given below are two statements :

Statement-I: All the geometrical formers of the complex $[M(NH_3)_4Cl_2]$ are optically inactive.

Statement-II: Both geometrical isomers of the complex $[M(NH_3)_4Cl_2]$ does not posses plane of symmetry.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement-I and Statement-II are correct.
- (2) Statement-I is correct but Statement-II is incorrect.
- (3) Both Statement-I and II are incorrect.
- (4) Statement-I is incorrect but Statement-II is correct.
- **3.** Given below are two statements :

Statement-I: $[Cr(H_2O)_6]Cl_2$ and $[Fe(H_2O)_6]Cl_2$ are oxidising in nature.

Statement-II: $[Fe(CN)_6]^{4-}$ ion is an outer orbital complex.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement-I and Statement-II are correct.
- (2) Statement-I is correct but Statement-II is incorrect.
- (3) Both Statement-I and II are incorrect.
- (4) Statement-I is incorrect but Statement-II is correct.

4. Given below are two statements :

Statement-I: Cis-platin is used in the treatment of Cancer.

Statement-II: EDTA is used for treatment of lead poisoning.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement-I and Statement-II are correct.
- (2) Statement-I is correct but Statement-II is incorrect.
- (3) Both Statement-I and II are incorrect.
- (4) Statement-I is incorrect but Statement-II is correct.
- **5.** Given below are two statements :

Statement-I: The metal to ligand bonding creates a synergic effect which strength the bond between CO and the metal.

Statement-II: The complex with d⁰ and d¹⁰ configuration show d–d transition.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement-I and Statement-II are correct.
- (2) Statement-I is correct but Statement-II is incorrect.
- (3) Both Statement-I and II are incorrect.
- (4) Statement-I is incorrect but Statement-II is correct.
- **6.** Given below are two statements :

Statement-I: The primary valency are normally ionisable and are satisfied by negative ions.

Statement-II: The secondary valency are non-ionisable are satisfied by neutral molecules or negative ions.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement-I and Statement-II are correct.
- (2) Statement-I is correct but Statement-II is incorrect.
- (3) Both Statement-I and II are incorrect.
- (4) Statement-I is incorrect but Statement-II is correct.

7. Given below are two statements :

Statement-I: Valence bond theory explain the colour exhibited by co-ordination compounds.

Statement-II: CFT considers the metalligand bond to be ionic from electrostatic interactions between the metal ion and the ligand.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement-I and Statement-II are correct.
- (2) Statement-I is correct but Statement-II is incorrect.
- (3) Both Statement-I and II are incorrect.
- (4) Statement-I is incorrect but Statement-II is correct.
- **8.** Given below are two statements :

Statement-I: d⁴ to d⁷ co-ordination entities are less stable for strong field as compound to weak field cases.

Statement-II: Ruby is aluminium oxide (Al_2O_3) containing about 0.5 - 1% Cr^{+2} ions (d^4) .

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement-I and Statement-II are correct.
- (2) Statement-I is correct but Statement-II is incorrect.
- (3) Both Statement-I and II are incorrect.
- (4) Statement-I is incorrect but Statement-II is correct.
- **9.** Given below are two statements :

Statement-I: Decacarbonyl diamangnes (0) is made up of two square bipyramidal [Mn(CO)₅] units joined by a Mn–Mn bond.

Statement-II: Zero oxidation state of central metal cannot be stabilised by CO groups.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement-I and Statement-II are correct.
- (2) Statement-I is correct but Statement-II is incorrect.
- (3) Both Statement-I and II are incorrect.
- (4) Statement-I is incorrect but Statement-II is correct.

10. Given below are two statements:

Statement-I: Excess of copper and iron from plant/animal systems are removed by the chelating ligands D-penicillamine and deferrioxime B via the formation of Coordination compounds.

Statement-II: Crystal field splitting energy in tetrahedral complex is less as compared to the octahedral complexes.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement-I and Statement-II are correct.
- (2) Statement-I is correct but Statement-II is incorrect.
- (3) Both Statement-I and II are incorrect.
- (4) Statement-I is incorrect but Statement-II is correct.
- **11.** Given below are two statements:

Assertion : EDTA ligand forms complex with metal ion of 3d series in the ratio of 1 : 1

Reason : EDTA ligand has four -COOH group's

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- (3) (A) is correct but (R) is not correct.
- (4) (A) is not correct but (R) is correct.
- **12. Assertion**: The correct order of the wavelength of absorption in the visible vision is

 $[Ni(NO_2)_6]^{4-} < [Ni(NH_3)_6]^{+2} < [Ni(H_2O)_6]^{+2}$

Reason : The stability of different complexes depends on the strength of the ligand field of the various ligand

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- (3) (A) is correct but (R) is not correct.
- (4) (A) is not correct but (R) is correct.

13. Assertion: KMnO₄ & K₂Cr₂O₇ both are coloured compound.

Reason : The colour of the compound is only due to d–d transition.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- (3) (A) is correct but (R) is not correct.
- (4) (A) is not correct but (R) is correct.
- **14. Assertion**: Cu^{+2} ion never form complex with $CN^- \& I^-$ ions.

Reason: Cu⁺² is a stronger oxidising while CN⁻ & I⁻ both are stronger reducing agent. In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- (3) (A) is correct but (R) is not correct.
- (4) (A) is not correct but (R) is correct.
- **15.** Assertion: The colour of $[Co(NH_3)_5NO_2]^{+2}$ and $[Co(NH_3)_5ONO]^{2+}$ is different.

Reason: Both are linkage isomers.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- (3) (A) is correct but (R) is not correct.
- (4) (A) is not correct but (R) is correct.
- **16.** Match the column :

	Column-I	Column-II						
[C	omplex Ion]	[Hybridisation & no. of						
		u	npaired electron]					
(1)	$[Co(H_2O)_6]^{+3}$	(a)	dsp ² , 0					
(2)	$[Fe(CN)_6]^{3-}$	(b)	dsp ² , 1					
(3)	$[Ni(CN)_4]^{2-}$	(c)	d^2sp^3 , 0					
(4)	$[Co(CN)_4]^{2-}$	(d)	d^2sp^3 , 1					

- (1) 1 c, 2 a, 3 d, 4 b
- (2) 1 c, 2 d, 3 b, 4 a
- (3) 1 c, 2 d, 3 a, 4 b
- (4) 1 a, 2 c, 3 d, 4 b
- **17.** Match the column:

	Column-I	Column-II						
	[Complex Ion]	[No. of geometrical						
			Isomer]					
(1)	$[Co(NH_3)_6]^{+3}$	(a)	5					
(2)	[Co(NH ₃) ₂ Cl ₂ Br ₂] ⁻	(b)	0					
(3)	[Pt(NH ₃) ₃ Cl ₃] ⁺	(c)	15					
(4)	[Pt(NH ₃)(H ₂ O)	(d)	2					
	(Py)ClBr I] ⁺							

- (1) 1 b, 2 d, 3 a, 4 c
- (2) 1 b, 2 a, 3 d, 4 c
- (3) 1 a, 2 b, 3 d, 4 c
- (4) 1 c, 2 a, 3 d, 4 b
- **18.** Match the column:

	Column-I		Column-II
(C	omplexion)	(T	ype of complex
		\ \ \	with magnetic
			moment)
(1)	$[Co(OX)_3]^{3-}$	(a)	Inner orbital,
			complex,
			$\mu = \sqrt{3}$
(2)	[Fe(EDTA)]	(b)	Outer orbital,
			complex,
			$\mu = \sqrt{24}$
(3)	$[MnF_6]^{3-}$	(c)	Outer orbital,
			complex,
			$\mu = \sqrt{8}$
(4)	$[Ni(H_2O)_6]^{+2}$	(d)	Inner orbital,
			complex,
			$\mu = 0$

- (1) 1 d, 2 a, 3 b, 4 c
- (2) 1 c, 2 a, 3 b, 4 d
- (3) 1 d, 2 b, 3 a, 4 c
- (4) 1 a, 2 d, 3 b, 4 c

19. Match the column:

[C	Column-I onfiscation in octahedral complex]		Column-II [Magnetic moment]
(1)	d ⁴ [Low spin]	(a)	$\mu = \sqrt{3} BM$
(2)	d ⁴ [High spin]	(b)	$\mu = \sqrt{35} \text{ BM}$
(3)	d ⁵ [Low spin]	(c)	$\mu = \sqrt{8} BM$
(4)	d ⁵ [High spin]	(d)	$\mu = \sqrt{24} BM$

- (1) 1 b, 2 d, 3 a, 4 c
- (2) 1 a, 2 d, 3 d, 4 b
- (3) 1 d, 2 c, 3 a, 4 b
- (4) 1 c, 2 d, 3 a, 4 b

20. Match the column:

100	Column-I omplex Ion]	Column-II [Total no. of chelate ring]					
(1)	[Fe(EDTA)]	(a)	2				
(2)	[Ni(dmg) ₂]	(b)	3				
(3)	$[Fe(en)_3]^{+3}$	(c)	4				
(4)	[Co(en) ₂ Cl ₂] ⁺	(d)	5				

- (1) 1 a, 2 c, 3 b, 4 d
- (2) 1 d, 2 c, 3 b, 4 a
- (3) 1 b, 2 c, 3 d, 4 a
- (4) 1 c, 2 d, 3 b, 4 a

21. Match the column:

· · · · · · · · · · · · · · · · · · ·	i the column .						
	Column-I	Column-II					
[4	Complex Ion]	[V	alue of CFSE]				
(1)	$[Cr(H_2O)_6]^{+2}$	(a)	Zero				
(2)	$[Cr(NH_3)_6]^{+2}$	(b)	$-0.4 \Delta_0$				
(3)	$[Fe(H_2O)_6]^{+3}$	(c)	$-0.6 \Delta_0$				
(4)	$[CoF_6]^{3-}$	(d)	$-1.6 \Delta_0 + P$				

- (1) 1 a, 2 c, 3 b, 4 d
- (2) 1 b, 2 d, 3 c, 4 a
- (3) 1 c, 2 d, 3 a, 4 b
- (4) 1 d, 2 a, 3 c, 4 b

22. Match the column:

	Column-I	Column-II					
	(Complex	(Element)					
	compound)						
(1)	Chlorophyll	(a)	Rhodium				
(2)	Blood pigment	(b)	Cobalt				
(3)	Vitamin B ₁₂	(c)	Magnesium				
(4)	Wilkinson	(d)	Iron				
	catalyst						

- (1) 1 a, 2 d, 3 b, 4 c
- (2) 1 c, 2 d, 3 b, 4 a
- (3) 1 c, 2 b, 3 d, 4 a
- (4) 1 d, 2 a, 3 b, 4 c
- **23.** Which of the following is/are inner orbital complex(es)?
 - (A) $[Fe(NH_3)_6]^{+2}$
- (B) $[Co(H_2O)_6]^{+3}$
- (C) $[Mn(NH_3)_6]^{+2}$
- (D) $[Co(C_2O_4)_3]^{-3}$
- (1) If (A), (B) and (C) options are correct.
- (2) If (A) and (B) both options are correct.
- (3) If (B) and (D) both options are correct.
- (4) If (A) and (C) both options are correct.
- **24.** The compound(s) belonging to the alum family is(are)
 - (A) $K.Al(SO_4)_2.12H_2O$
 - (B) $K_2SO_4.Cr_2(SO_4)_3.24H_2O$
 - (C) $FeSO_4.(NH_4)_2SO_4.6H_2O$
 - (D) KCl.MgCl₂.6H₂O
 - (1) If (A), (B) and (C) options are correct.
 - (2) If (A) and (B) both options are correct.
 - (3) If (B) and (D) both options are correct.
 - (4) If (A) and (C) both options are correct.
- **25.** Which of the following complexes is/are have square planar in shape
 - (A) $[Cu(H_2O)_4]^{+2}$
- (B) $[Ni(CN)_4]^{-2}$
- (C) [Pt(Gly)₂]
- (D) $[Zn(Cl)_4]^{-2}$
- (1) If (A), (B) and (C) options are correct.
- (2) If (A) and (B) both options are correct.
- (3) If (B) and (D) both options are correct.
- (4) If (A) and (C) both options are correct.
- **26.** Which statement is/are correct :-
 - (A) [Ni(CO)₄] tetrahedral & diamagnetic
 - (B) [Ni(CN)₄]⁻² square planer & diamagnetic
 - (C) $[Cu(NH_3)_4]^{+2}$ tetrahedral and diamagnetic
 - (D) [NiCl₄]⁻² tetrahedral and paramagnetic
 - (1) If (A), (B) and (C) options are correct.
 - (2) If (A) and (B) and (D) options are correct.
 - (3) If (B) and (C) both options are correct.
 - (4) If (A) and (C) both options are correct.

COORDINATION COMPOUND

- **27.** Which of the following complexes are paramagnetic in nature?
 - (A) $[Ni(CO)_4]$
- (B) $[Mn(CN)_6]^{-3}$
- (C) $[Co(H_2O)_6]^{+3}$
- (D) $[Ni(NH_3)_6]^{+2}$
- (1) If (A), (B) and (C) options are correct.
- (2) If (A) and (B) both options are correct.
- (3) If (B) and (D) both options are correct.
- (4) If (A) and (C) both options are correct.
- **28.** Correct match is/are -
 - (A) Nesseler's reagent $K_2[HgI_4]$ + KOH
 - (B) Ferrocene [Fe $\{\eta^2 C_5H_5\}_2$]
 - (C) Chromocene $[Cr(\eta^6 C_6H_6)_2]$
 - (D) Zeilglar Natta catalyst [(Ph₃P)₃RhCl]
 - (1) If (A), (B) and (C) options are correct.
 - (2) If (A) and (B) both options are correct.
 - (3) If (B) and (D) both options are correct.
 - (4) If (A) and (C) both options are correct.

- **29.** Which is true for EDTA⁻⁴ ligand :-
 - (A) Chelating ligand
 - (B) Flexidentate ligand
 - (C) Polydentate ligands
 - (D) Ambidentate ligands
 - (1) If (A), (B) and (C) options are correct.
 - (2) If (A) and (B) both options are correct.
 - (3) If (B) and (D) both options are correct.

NEET

- (4) If (A) and (C) both options are correct.
- 30. Which are organometallic compound
 - (A) Zeise's salt
 - (B) Ferrocene
 - (C) Grignard reagent
 - (D) Cis-platin
 - (1) If (A), (B) and (C) options are correct.
 - (2) If (A) and (B) both options are correct.
 - (3) If (B) and (D) both options are correct.
 - (4) If (A) and (C) both options are correct.

EXERCISE-III (Analytical Questions) ANSWER KEY											KEY				
Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Answer	1	2	3	1	2	1	4	3	2	1	3	2	3	1	1
Question	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Answer	3	2	1	4	2	3	2	3	2	1	2	3	1	1	1