D AND F-BLOCK ELEMENTS PYO

AIPMT 2006

1. In which of the following pairs are both the ions coloured in aqueous solution?

(At. no. : Sc= 21, Ti = 22, Ni = 28, Cu = 29, Co = 27)

- (1) Ni²⁺, Cu⁺
- (2) Ni²⁺, Ti³⁺
- (3) Sc³⁺, Ti³⁺
- (4) Sc3+, Co2+
- **2.** More number of oxidation states are exhibited by the actinoids than by the lanthanoids. The main reason for this is
 - (1) More active nature of the actinoids
 - (2) More energy difference between 5f and 6d orbitals than that between 4f and 5d orbitals
 - (3) Lesser energy difference between 5f and 6d orbitals than that between 4f and 5d orbitals
 - (4) Greater metallic character of the lanthanoids than that of the corresponding actinoids

AIPMT 2007

- **3.** Which one of the following ions is the most stable in aqueous solution
 - $(1) V^{3+}$
- (2) Ti^{3+}
- $(3) \text{ Mn}^{3+}$
- $(4) Cr^{3+}$
- **4.** Identify the incorrect statement among the following
 - (1) Lanthanoid contraction is the accumulation of successive shrinkages.
 - (2) As a result of lanthanoid contraction, the properties of 4d series of the transition elements have no similarities with the 5d series of elements.
 - (3) Shielding power of 4f electrons is quite weak.
 - (4) There is a decrease in the radii of the atoms or ions as one proceeds from La to Lu.

AIPMT 2008

- 5. The correct order of decreasing second ionisation enthalpy of Ti (22), V(23), Cr(24) and Mn (25) is:-
 - (1) Mn>Cr>Ti>V
- (2) Ti>V>Cr>Mn
- (3) Cr>Mn>V>Ti
- (4) V>Mn>Cr>Ti

AIPMT 2009

- **6.** Which one of the elements with the following outer orbital configurations may exhibit the largest number of oxidation states?
 - $(1) 3d^24s^2$
- $(2) 3d^34s^2$
- $(3) 3d^54s^1$
- (4) 3d⁵4s²

AIPMT 2010

- **7.** Which of the following oxidation states is the most common among the lanthanoids:-
 - (1)2
- (2)5
- (3) 3
- (4) 4
- **8.** Which of the following pairs has the same size?
 - (1) Zn^{2+} , Hf^{4+}
- (2) Fe^{2+} , Ni^{2+}
- (3) Zr^{4+} , Ti^{4+}
- $(4) Zr^{4+}, Hf^{4+}$
- **9.** Which one of the following ions has electronic configuration [Ar]3d⁶?

(At. no.
$$Mn = 25$$
, $Fe = 26$, $Co = 27$, $Ni = 28$)

- $(1) Co^{3+}$
- (2) Ni^{3+}
- $(3) \text{ Mn}^{3+}$
- (4) Fe^{3+}
- **10.** Which of the following ions will exhibit colour in aqueous solutions?
 - (1) Sc^{3+} (z = 21)
- (2) La^{3+} (z = 57)
- (3) $Ti^{3+}(z = 22)$
- (4) Lu^{3+} (z = 71)

AIPMT Pre. 2011

- **11.** For the four successive transition elements (Cr, Mn, Fe and Co), the stability of +2 oxidation state in gaseous state will be there in which of the following order?
 - (1) Mn > Fe > Cr > Co
 - (2) Fe > Mn > Co > Cr
 - (3) Co > Mn > Fe > Cr
 - (4) Cr > Mn > Co > Fe
 - (At. no. Cr = 24, Mn = 25, Fe = 26, Co = 27)

D AND F-BLOCK ELEMENTS

NEET

AIPMT Pre. 2012

- **12.** Which of the statements is not true?
 - (1) K₂Cr₂O₇ solution in acidic medium is orange
 - (2) K₂Cr₂O₇ solution becomes yellow on increasing the pH beyond 7
 - (3) On passing H₂S through acidified K₂Cr₂O₇ solution, a milky colour is observed
 - (4) Na₂Cr₂O₇ is preferred over K₂Cr₂O₇ in volumetric analysis

AIPMT Mains 2012

- **13.** Which one of the following does not correctly represent the correct order of the property indicated against it?
 - (1) Ti < V < Cr < Mn: increasing melting points
 - (2) Ti < V < Mn < Cr : increasing 2^{nd} ionization enthalpy
 - (3) Ti < V < Cr < Mn : increasing number of oxidation states
 - (4) $Ti^{3+} < V^{3+} < Cr^{3+} < Mn^{3+}$: increasing magnetic moment
- **14.** The catalytic activity of transition metals and their compounds is described mainly to:-
 - (1) Their ability to adopt variable oxidation states
 - (2) Their chemical reactivity
 - (3) Their magnetic behaviour
 - (4) Their unfilled d-orbitals

AIPMT 2015

- **15.** Magnetic moment 2.84 B.M. is given by :- (At. no.), Ni = 28, Ti = 22, Cr = 24, Co = 27)
 - (1) Ti^{3+}
- $(2) Cr^{2+}$
- $(3) Co^{2+}$
- $(4) Ni^{2+}$
- **16.** Which of the following processes does not involve oxidation of iron?
 - (1) Decolourization of blue CuSO₄ solution by iron
 - (2) Formation of Fe(CO)₅ from Fe
 - (3) Liberation of H_2 from steam by iron at high temperature
 - (4) Rusting of iron sheets
- **17.** Because of lanthanoid contraction, which of the following pairs of elements have nearly same atomic radii ? (Number in the parenthesis are atomic numbers).

- (1) Zr (40) & Nb (41) (2) Zr (40) & Hf (72)
- (3) Zr (40) & Ta (73) (4) Ti (22) & Zr (40)

NEET-I 2016

- 18. Which one of the following statements is correct when SO_2 is passed through acidified $K_2Cr_2O_7$ solution?
 - (1) The solution turns blue
 - (2) The solution is decolourized
 - (3) SO₂ is reduced
 - (4) Green Cr₂(SO₄)₃ is formed
- **19.** The electronic configurations of Eu(Atomic No 63), Gd(Atomic No 64) and Tb (Atomic No. 65) are
 - (1) $[Xe]4f^76s^2$, $[Xe]4f^86s^2$ and $[Xe]4f^85d^16s^2$
 - (2) $[Xe]4f^65d^16s^2$, $[Xe]4f^75d^16s^2$ and $[Xe]4f^96s^2$
 - (3) $[Xe]4f^65d^16s^2$, $[Xe]4f^75d^16s^2$ and $[Xe]4f^85d^16s^2$
 - (4) [Xe] $4f^76s^2$, [Xe] $4f^75d^16s^2$ and [Xe] $4f^96s^2$

NEET-II 2016

- **20.** Which one of the following statements related to lanthanons is **incorrect**?
 - (1) All the lanthanons are much more reactive than aluminium
 - (2) Ce(+4) solutions are widely used as oxidizing agent in volumetric analysis
 - (3) Europium shows +2 oxidation state.
 - (4) The basicity decreases as the ionic radius decreases from Pr to Lu.

NEET(UG) 2017

- **21.** Name the gas that can readily decolourise acidified $KMnO_4$ solution:
 - $(1) SO_2$
- (2) NO₂
- $(3) P_2 O_5$
- $(4) CO_2$
- **22.** HgCl₂ and I₂ both when dissolved in water containing I- ions the pair of species formed is
 - (1) HgI₂, I-
- (2) HgI_4^{2-} , I_3^-
- (3) Hg_2I_2 , I-
- (4) HgI_2 , I_3^-
- **23.** The reason for greater range of oxidation states in actinoids is attributed to:-
 - (1) Actinoid contraction
 - (2) 5f, 6d and 7s levels having comparable energies
 - (3) 4f and 5d levels being close in energies
 - (4) The radioactive nature of actinoids

DAND F-BLOCK ELEMENTS NEET

NEET(UG) 2018

- 24. Which one of the following ions exhibits d-d transition and paramagnetism as well?
 - (1) CrO_4^{2-}
- (2) $Cr_2O_7^{2-}$
- (3) MnO_{4}
- (4) MnO_4^{2-}
- Match the metal ions given in Column I with 25. the spin magnetic moments of the ions given in Column II and assign the correct code:

Column II Column I i. $\sqrt{8}$ B.M. a. Co3+ ii. $\sqrt{35}$ B.M. b. Cr³⁺ iii. $\sqrt{3}$ B.M. c. Fe³⁺ iv. $\sqrt{24}$ B.M. d. Ni²⁺ v. $\sqrt{15}$ B.M.

- b C d a i
- (1)iv v ii
- (2)i ii iii iv
- (3)iv i ii iii
- (4)iii V i ii

NEET(UG) 2019

- 26. Which of the following reactions are disproportionation reaction?
 - (a) $2Cu^+ \rightarrow Cu^{2+} + Cu^0$
 - (b) $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$
 - (c) $2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + MnO_2 + O_2$
 - (d) $2MnO_4^- + 3Mn^{2+} + 2H_2O \rightarrow 5MnO_2 + 4H^{\oplus}$ Select the **correct** option from the following:-
 - (1) (a) and (b) only
- (2) (a), (b) and (c)
- (3) (a), (c) and (d)
- (4) (a) and (d) only
- 27. The manganate and permanganate ions are tetrahedral, due to
 - (1) The π -bonding involves overlap of porbitals of oxygen with d-orbitals of manganese
 - (2) There is no π -bonding
 - (3) The π -bonding involves overlap of porbitals of oxygen with p-orbitals of managanese
 - (4) The π -bonding involves overlap of dorbitals of oxygen with d-orbitals of manganate

NEET(UG) 2019 (ODISHA)

28. Match the catalyst with the process:-

Catalyst

Process

- (i) V_2O_5
- (a) The oxidation of ethyne to ethanal
- (ii) $TiCl_4+Al(CH_3)_3$
- (b) Polymerisation of alkynes
- (iii) PdCl₂
- (c) Oxidation of SO₂ in the manufacture of H_2SO_4
- (iv)Nickel complexes
- (d) Polymerisation of ethylene

Which of the following is the correct option?

- (1) i-c, ii-d, iii-a, iv-b
- (2) i-a, ii-b, iii-c, iv-d
- (3) i-a, ii-c, iii-b, iv-d
- (4) i-c, ii-a, iii-d, iv-b
- 29. When neutral or faintly alkaline KMnO₄ is treated with potassium iodide, iodide ion is converted into 'X'. 'X' is-
 - $(1) I_2$
- (2) IO_4^-
- $(3) IO_3^-$
- $(4) IO^{-}$
- 30. The oxidation state of Cr in CrO₅ is:
 - (1) 6
- (2) + 12
- (3) + 6
- (4) + 4

NEET(UG) 2020

- 31. The calculated spin only magnetic moment of Cr²⁺ ion is:
 - (1) 2.84 BM
- (2) 3.87 BM
- (3) 4.90 BM
- (4) 5.92 BM
- 32. Identify the incorrect statement.
 - (1) The oxidation states of chromium in CrO_4^{2-} and $Cr_2O_7^{2-}$ are not the same
 - (2) Cr^{2+} (d⁴) is a stronger reducing agent than $Fe^{2+}(d^6)$ in water.
 - (3) The transition metals and their compounds are known for their catalytic activity due to their ability to adopt multiple oxidation states and to form complexes.
 - (4) Interstitial compounds are those that are formed when small atoms like H, C or N are trapped inside the crystal lattices of metals.

DAND F-BLOCK ELEMENTS NEET

NEET(UG) 2020(COVID-19)

- 33. The oxidation number of the underlined atom in the following species
 - (1) Cu_2O is -1
- (2) ClO_3 is +5
- (3) $K_2Cr_2O_7$ is + 6
- (4) $H\underline{Au}Cl_4$ is +3

Identify the incorrect option.

34. Match the following aspects with the respective metal.

Aspects

Metal

- (a) The metal which reveals a maximum number of oxidation states
- (i) Scandium
- (b) The metal although placed in 3d-series is considered not as a transition element
- (ii) Copper
- (c) The metal which does not exhibit variable oxidation states
- (iii) Manganese
- (d) The metal which in +1 oxidation state in aqueous solution undergoes disproportionation
- (iv) Zinc

Select the correct option:

- (1) (a)-(i) (b)-(iv) (c)-(ii) (d)-(iii)
- (2) (a)-(iii) (b)-(iv) (c)-(i) (d)-(ii)
- (3) (a)-(iii) (b)-(i) (c)-(iv) (d)-(ii)
- (4) (a)-(ii) (b)-(iv) (c)-(i) (d)-(iii)

NEET(UG) 2021

- 35. The **incorrect** statement among the following
 - (1) Actinoid contraction is greater for element to element than Lanthanoid contraction.
 - (2) Most of the trivalent Lanthanoid ions are colorless in the solid state.
 - (3) Lanthanoids are good conductors of heat and electricity.
 - (4) Actinoids are highly reactive metals, especially when finely divided.
- 36. Zr(Z=40) and Hf(Z=72) have similar atomic and ionic radii because of:
 - (1) Belonging to same group
 - (2) Diagonal relationship
 - (3) Lanthanoid contraction
 - (4) Having similar chemical properties

EXERCISE-II (Previous Year Questions) ANSWER KEY															
Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Answer	2	3	4	2	3	4	3	4	1	3	1	4	1	1	4
Question	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Answer	2	2	4	4	1	1	2	2	4	1	1	1	1	3	3
Question	31	32	33	34	35	36									
Answer	3	1	1	2	2	3									

D AND F-BLOCK ELEMENTS NEET

1. Given below are two statements :

Statement-I: Ag is a transition element.

Statement-II: Ag atom has completely filled d-orbital $(4d^{10})$ in it's ground state.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Both Statement-I and II are incorrect.
- (2) Statement-I is correct while II is incorrect.
- (3) Statement-I and II both are correct.
- (4) Statement-I is incorrect and II is correct.
- **2.** Given below are two statements :

Statement-I: All the transition elements show typical metallic properties such as high tensile strength, ductility but low thermal and electrical conductivity.

Statement-II: Zn, Cd & Hg are very hard and have low volatility.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement-I is correct while II is incorrect.
- (2) Both Statement-I and II are incorrect.
- (3) Statement-I and II both are correct.
- (4) Statement-I is incorrect and II is correct.
- **3.** Given below are two statements :

Statement-I: Transition elements exhibit higher enthalpies of atomisation.

Statement-II: Transition elements have stronger inter atomic interaction.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement-I is correct while II is incorrect.
- (2) Statement-I and II both are correct.
- (3) Both Statement-I and II are incorrect.
- (4) Statement-I is incorrect and II is correct.

4. Given below are two statements :

Statement-I : Cr^{+2} act as reducing agent and Mn^{+3} act as oxidising agent.

Statement-II: $E^0(M^{+2}/M)$ value for all 3d-series element's are negative.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement-I is incorrect and II is correct.
- (2) Statement-I and II both are correct.
- (3) Both Statement-I and II are incorrect.
- (4) Statement-I is correct while II is incorrect.
- **5.** Given below are two statements :

Statement-I: All Cu(II) halides are known except the iodide.

Statement-II : Increasing order of oxidising power is $VO_2^+ < Cr_2O_7^{2-} < MnO_4^-$

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Both Statement-I and II are incorrect.
- (2) Statement-I is incorrect and II is correct.
- (3) Statement-I and II both are correct.
- (4) Statement-I is correct while II is incorrect.
- **6.** Given below are two statements :

Statement-I: Ce⁺⁴ is a strong oxidant but Eu⁺² is a strong reducing agent.

Statement-II: All lanthanoid ion in +3 oxidation state are paramagnetic.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement-I and II both are correct.
- (2) Both Statement-I and II are incorrect.
- (3) Statement-I is correct while II is incorrect.
- (4) Statement-I is incorrect and II is correct.

D AND F-BLOCK ELEMENTS

NEET

7. Match the column:

	Column I	Column II			
	(Catalysis)	(Process)			
(i)	Ni in the	(a)	Zieglar-		
	presence of		Natta		
	Hydrogen		catalyst		
(ii)	CuCl ₂	(b)	Contact		
			process		
(iii)	V_2O_5	(c)	Vegetable oil		
			to vegetable		
			ghee		
(iv)	TiCl ₄ +Al(CH ₃) ₃	(d)	Decon		
			process		

- (1) i-a, ii-b, iii-c, iv-d
- (2) i-c, ii-d, iii-b, iv-a
- (3) i-c, ii-d, iii-a, iv-b
- (4) i-b, ii-c, iii-d, iv-a

8. Match the column:

	Column I	Column II			
	(Property)	(Element)			
(i)	Lanthanoid which	(a)	Pm		
	show +4 oxidation	4			
	state				
(ii)	Lanthanoid which can	(b)	Gd		
	show +2 oxidation				
	state				
(iii)	Radioactive	(c)	Се		
	lanthanoid				
(iv)	Lanthanoid which has	(d)	Eu		
	4f ⁷ configuration in				
	+3 oxidation state				

- (1) i-a, ii-b, iii-c, iv-d
- (2) i-c, ii-d, iii-b, iv-a
- (3) i-c, ii-d, iii-a, iv-b
- (4) i-b, ii-c, iii-d, iv-a

9. Match the column :

	Column I	Column II		
(a)	FeSO ₄ .7H ₂ O	(p)	Green vitriol	
(b)	MgSO ₄ .7H ₂ O	(q)	Blue vitriol	
(c)	ZnSO ₄ .7H ₂ O	(r)	Eupsum salt	
(d)	CuSO ₄ .5H ₂ O	(s)	White vitriol	

- (1) a-p, b-r, c-s, d-q
- (2) a-q, b-r, s-s, d-p
- (3) a-r, b-s, c-p, d-q
- (4) a-q, b-p, c-s, d-r

10. Match the column :

	Column I	Column II			
(Co	omposition)	(Alloy)			
(a)	Cu + Ni	(p)	Silver UK		
			coins		
(b)	Ni+Cu+ Zn	(q)	German silver		
(c)	Cu+ Zn+ Sn	(r)	Gun metal		
(d)	Ln(95%)+Fe	(s)	Misch metal		

- (1) a-p, b-q, c-r, d-s
- (2) a-q, b-r, c-s, d-p
- (3) a-s, b-q, c-r, d-p
- (4) a-q, b-p, c-s, d-r

11. Match the column :

	Co	olumn I	Column II			
	(Co	mpound)	(Properties)			
	(i)	K_2MnO_4	(a)	Amphoteric		
ĺ	(ii)	KMnO ₄	(b)	Paramagnetic &		
				green coloured		
	(iii	$K_2Cr_2O_7$	(c)	Diamagnetic &		
				purple coloured		
ĺ	(iv)	V_2O_5	(d)	Diamagnetic &		
				orange coloured		

- (1) i-a, ii-b, iii-c, iv-d
- (2) i-c, ii-d, iii-b, iv-a
- (3) i-b, ii-c, iii-d, iv-a
- (4) i-d, ii-a, iii-b, iv-c
- **12.** Given below are two statements; one is labelled as **Assertion (A)** and the other is labelled as **Reason(R)**.

Assertion (A): K₂Cr₂O₇ is used as a primary standard solution in Titration.

Reason (R): It is not a hygroscopic in nature. In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) If (A) & (R) both are correct and (R) is the correct explanation of (A).
- (2) If (A) & (R) both are correct but (R) is not the correct explanation of (A).
- (3) (A) is not correct but (R) is incorrect.
- (4) (A) & (R) both are correct.

D AND F-BLOCK ELEMENTS NEET

13. Given below are two statements; one is labelled as **Assertion (A)** and the other is labelled as **Reason(R)**.

Assertion (A): The 3rd ionisation energy of Gd is abnormally low.

Reason (R): Exchange energy of 4f subshell is high.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) If (A) & (R) both are correct and (R) is the correct explanation of (A).
- (2) If (A) & (R) both are correct but (R) is not the correct explanation of (A).
- (3) (A) is not correct but (R) is incorrect.
- (4) (A) & (R) both are correct.
- **14.** Given below are two statements; one is labelled as **Assertion (A)** and the other is labelled as **Reason(R)**.

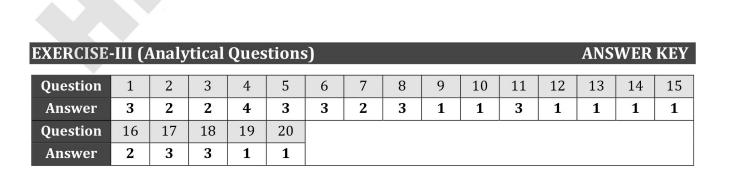
Assertion (A): Ce⁺⁴ can oxidise water and it is a good analytical reagent.

Reason (R): The E^0 value for Ce^{+4}/Ce^{+3} is +1.74V.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) If (A) & (R) both are correct and (R) is the correct explanation of (A).
- (2) If (A) & (R) both are correct but (R) is not the correct explanation of (A).
- (3) (A) is not correct but (R) is incorrect.
- (4) (A) & (R) both are correct.
- **15.** Given below are two statements; one is labelled as **Assertion (A)** and the other is labelled as **Reason(R)**.

Assertion (A) : Eu^{+2} & Yb^{+2} are reducing agent.


Reason (R): Both ions have strong tendency to convert into stable +3 in its aq. solution. In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) If (A) & (R) both are correct and (R) is the correct explanation of (A).
- (2) If (A) & (R) both are correct but (R) is not the correct explanation of (A).
- (3) (A) is not correct but (R) is incorrect.
- (4) (A) & (R) both are correct.
- **16.** Which of the following oxides are Amphoteric in nature.
 - (A) V_2O_5
- (B) Cr_2O_3
- (C) CrO_5
- (D) Mn_2O_7
- (1) If A, B and C options are correct.
- (2) If A & B both options are correct.
- (3) If B & D both are options correct.
- (4) If A & C both are options correct.
- **17.** Which of the following statement is correct.
 - (A) In Lanthanide series metallic radius regularly decreases from La to Lu.
 - (B) La is actually an elements of transition series rather than lanthanide.
 - (C) La(OH)₃ is less basic than Lu(OH)₃
 - (D) The atomic radius of Zr & Hf are nearly similar because of lanthanoid contraction.
 - (1) If A, B and C options are correct.
 - (2) If A & B both options are correct.
 - (3) If B & D both are options correct.
 - (4) If A & C both are options correct.
- **18.** Which of the following element does not [Ar]3d⁵ in its electronic configuration.
 - (A) Cr
- (B) Fe
- (C) Mn
- (D) Ni
- (1) If A, B and C options are correct.
- (2) If A & B both options are correct.
- (3) If B & D both are options correct.
- (4) If A & C both are options correct.
- **19.** Which of the following order of given properties are correct.
 - (A) $CrO > Cr_2O_3 > CrO_3$: Melting point
 - (B) $Mn_2O_7 > Mn_2O_3 > MnO$: Acidic nature
 - (C) CrO₃>MoO₃>WO₃: Oxidising nature character
 - (D) $V_2O_5 > V_2O_4 > V_2O_3$: Basic nature
 - (1) If A, B and C options are correct.
 - (2) If A & B both options are correct.
 - (3) If B & D both are options correct.
 - (4) If A & C both are options correct.

D AND F-BLOCK ELEMENTS NEET

- **20.** MnO_4^{-2} can be converted to MnO_4^{-}
 - (A) By oxidation of O₃
 - (B) By electrolytic oxidation
 - (C) By the addition of dil. H₂SO₄
 - (D) By the addition of HCl

- (1) If A, B and C options are correct.
- (2) If A & B both options are correct.
- (3) If B & D both are options correct.
- (4) If A & C both are options correct.

