- The normal at the point $(bt_1^2, 2bt_1)$ on a parabola 1. meets the parabola again in the point (bt_2^2 , $2bt_2$),

 - (1) $t_2 = t_1 + \frac{2}{t_1}$ (2) $t_2 = -t_1 \frac{2}{t_1}$
 - (3) $t_2 = -t_1 + \frac{2}{t}$ (4) $t_2 = t_1 \frac{2}{t}$
- The locus of the vertices of the family of parabolas 2.

$$y = \frac{a^3 x^2}{3} + \frac{a^2 x}{2} - 2a \text{ is}$$

[AIEEE-2006]

- (1) $xy = \frac{3}{4}$
- (2) $xy = \frac{35}{16}$
- (3) $xy = \frac{64}{105}$
- (4) $xy = \frac{105}{64}$
- The equation of a tangent to the parabola $y^2 = 8x$ 3. is y = x + 2. The point on this line from which the other tangent to the parabola is perpendicular to the given tangents is-[AIEEE-2007]
 - (1)(-1, 1) (2)(0, 2) (3)(2, 4)
- (4)(-2, 0)
- For the hyperbola $\frac{x^2}{\cos^2 \alpha} \frac{y^2}{\sin^2 \alpha} = 1$, which of the

following remains constant when α varies?

[AIEEE-2007]

- (1) Abscissae of vertices (2) Abscissae of foci
- (3) Eccentricity
- (4) Directrix
- If two tangents drawn from a point P to the parabola 5. $y^2 = 4x$ are at right angles then the locus of P is :-

[AIEEE-2010]

- (1) x = 1
- (2) 2x + 1 = 0
- (3) x = -1
- (4) 2x 1 = 0
- The equation of the hyperbola whose foci are 6. (-2,0) and (2,0) and eccentricity is 2 is given by :

[AIEEE-2011]

- $(1) -3x^2 + y^2 = 3 (2) x^2 3y^2 = 3$
- (3) $3x^2 y^2 = 3$ (4) $-x^2 + 3y^2 = 3$
- 7. The area of the triangle formed by the lines joining the vertex of the parabola, $x^2 = 8y$, to the extremities of its latus rectum is :-

[AIEEE-2012 (Online)]

- (1) 4
- (2) 2
- (3) 1
- (4) 8

The normal at $\left(2, \frac{3}{2}\right)$ to the ellipse, $\frac{x^2}{16} + \frac{y^2}{3} = 1$

touches a parabola, whose equation is:

[AIEEE-2012 (Online)]

- (1) $y^2 = 26x$
- (2) $y^2 = 14x$
- (3) $y^2 = -104x$
- (4) $y^2 = -14x$
- If P_1 and P_2 are two points on the ellipse

$$\frac{x^2}{4} + y^2 = 1$$
 at which the tangents are parallel to

the chord joining the points (0, 1) and (2, 0), then the distance between P_1 and P_2 is :-

[AIEEE-2012 (Online)]

- (1) $\sqrt{10}$ (2) $2\sqrt{2}$ (3) $\sqrt{5}$ (4) $2\sqrt{3}$
- **10.** The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{h^2} = 1$ and the

hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the

value of b² is-[AIEEE-2003] ; [AIEEE-2012 (Online)]

- (1)9
- (2) 1
- (3)5
- **11.** If the eccentricity of a hyperbola $\frac{x^2}{Q} \frac{y^2}{h^2} = 1$, which

passes through (k, 2) is $\frac{\sqrt{13}}{3}$, then the value of k²

is :-

[AIEEE-2012 (Online)]

- (1) 2
- (2) 8
- (3) 18
- (4) 1
- 12. The locus of the foot of perpendicular drawn from the centre of the ellipse $x^2 + 3y^2 = 6$ on any tangent to it is: [JEE(Main)-2014]
 - $(1) (x^2 y^2)^2 = 6x^2 + 2y^2$
 - (2) $(x^2 y^2)^2 = 6x^2 2y^2$
 - (3) $(x^2 + y^2)^2 = 6x^2 + 2y^2$
 - $(4) (x^2 + y^2)^2 = 6x^2 2y^2$
- **13**. The slope of the line touching both, the parabolas $y^2 = 4x$ and $x^2 = -32$ y is : [JEE(Main)-2014]
 - (1) $\frac{1}{2}$ (2) $\frac{3}{2}$ (3) $\frac{1}{8}$ (4) $\frac{2}{3}$

14. The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latera recta

to the ellipse $\frac{x^2}{Q} + \frac{y^2}{5} = 1$ is : [**JEE(Main)-2015**]

- (1) $\frac{27}{2}$ (2) 27 (3) $\frac{27}{4}$
- (4) 18
- **15**. Let O be the vertex and Q be any point on the parabola, $x^2 = 8y$. If the point P divides the line segment OQ internally in the ratio 1:3, then the locus of P is :-[JEE(Main)-2015]
 - (1) $y^2 = 2x$
- (2) $x^2 = 2y$
- (3) $x^2 = y$
- (4) $y^2 = x$
- **16**. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is: [JEE(Main)2016]

- (1) $\sqrt{3}$ (2) $\frac{4}{3}$ (3) $\frac{4}{\sqrt{3}}$ (4) $\frac{2}{\sqrt{3}}$
- A hyperbola passes through the point $P(\sqrt{2},\sqrt{3})$ 17. and has foci at (± 2, 0). Then the tangent to this hyperbola at P also passes through the point:

[JEE(Main)2017]

- (1) $\left(-\sqrt{2}, -\sqrt{3}\right)$ (2) $\left(3\sqrt{2}, 2\sqrt{3}\right)$
- (3) $(2\sqrt{2}, 3\sqrt{3})$ (4) $(\sqrt{3}, \sqrt{2})$
- 18. Consider a circle with centre lying on the focus of the parabola $y^2 = 2px$ such that it touches the directrix of the parabola. Then a point of intersection of the circle and the parabola is-

[IIT-1995]

- (1) (p/2, p)
- (2) (-p/2, p)
- (3) (-p/2, -p)
- (4) None of these
- 19. The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $y^2 = 4ax$ is another parabola with directrix-

[IIT-2002]

- (1) x = -a
- (2) x = -a/2
- (3) x = 0
- (4) x = a/2

- Locus of middle point of segment of tangent to 20. ellipse $x^2 + 2y^2 = 2$. Which is intercepted between the coordinate axes is-[IIT-2004]
 - (1) $\frac{1}{2x^2} + \frac{1}{4v^2} = 1$ (2) $\frac{1}{4x^2} + \frac{1}{2v^2} = 1$

 - (3) $\frac{x^2}{2} + \frac{y^2}{4} = 1$ (4) $\frac{x^2}{4} + \frac{y^2}{2} = 1$
- 21. A tangent is drawn at some point P of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 is intersecting to the coordinate

axes at points A and B the minimum area of the ΔOAB is-[IIT-2005]

(1) ab

- (2) $\frac{a^2 + b^2}{2}$
- (3) $\frac{a^2 + b^2}{4}$
- (4) $\frac{a^2 + b^2 ab}{2}$
- 22. Consider a branch of the hyperbola $x^{2} - 2y^{2} - 2\sqrt{2}x - 4\sqrt{2}y - 6 = 0$ with vertex at the point A. Let B be one of the end points of its latus rectum. If C is the focus of the hyperbola nearest to the point A. then the area of the triangle ABC is-[IIT-2008]
 - (1) $1 \sqrt{\frac{2}{3}}$
- (2) $\sqrt{\frac{3}{2}} 1$
- (3) $1 + \sqrt{\frac{2}{3}}$
- (4) $\sqrt{\frac{3}{2}} + 1$
- 23. The line passing through the extremity A of the major axis and extremity B of the minor axis of the ellipse $x^2 + 9y^2 = 9$ meets its auxiliary circle at the point M. Then the area of the triangle with vertices at A, M and the origin O is :-[IIT-2009]

- (1) $\frac{31}{10}$ (2) $\frac{29}{10}$ (3) $\frac{21}{10}$ (4) $\frac{27}{10}$
- *24. Let A and B be two distinct points on the parabola $y^2 = 4x$. If the axis of the parabola touches a circle of radius r having AB as its diameter, then the slope of the line joining A and B can be-[IIT-2010]

- (1) $-\frac{1}{r}$ (2) $\frac{1}{r}$ (3) $\frac{2}{r}$ (4) $-\frac{2}{r}$

Let P(6, 3) be a point on the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 . If the normal at the point P intersects

the x-axis at (9,0), then the eccentricity of the hyperbola is -[IIT-2011]

- (1) $\sqrt{\frac{5}{2}}$ (2) $\sqrt{\frac{3}{2}}$ (3) $\sqrt{2}$ (4) $\sqrt{3}$

- Consider the parabola $y^2 = 8x$. Let Δ_1 be the area 26. of the triangle formed by the end points of its latus

rectum and the point $P\left(\frac{1}{2},2\right)$ on the parabola,

and Δ_2 be the area of the triangle formed by drawing tangents at P and at the end points of

the latus rectum. Then $\frac{\Delta_1}{\Lambda_2}$ is [IIT-2011]

(1) 4

(2) 6

(3) 2

- (4) None of these
- The ellipse $E_1: \frac{x^2}{9} + \frac{x^2}{4} = 1$ is inscribed in a 27.

rectangle R whose sides are parallel to the coordinate axes. Another ellipse E, passing through the point (0,4) circumscribes the rectangle R. The eccentricity of the ellipse E₂ is -

- (1) $\frac{\sqrt{2}}{2}$ (2) $\frac{\sqrt{3}}{2}$ (3) $\frac{1}{2}$ (4) $\frac{3}{4}$

- 28. Let S be the focus of the parabola $y^2 = 8x$ and let PQ be the common chord of the circle $x^2 + y^2 - 2x - 4y = 0$ and the given parabola. The area of the triangle PQS is. [IIT-2012]
 - (1) 16

(2) 4

(3) 8

- (4) 2
- 29. If the normals of the parabola $y^2 = 4x$ drawn at the end points of its latus rectum are tangents to the circle $(x - 3)^2 + (y + 2)^2 = r^2$, then the value of r^2 is [JEE (Advanced) 2015]
 - (1) 4

(3) 2

- 30. Let the curve C be the mirror image of the parabola $y^2 = 4x$ with respect to the line x + y + 4 = 0. If A and B are the points of intersection of C with the line y = -5, then the distance between A and B is [JEE (Advanced) 2015]
 - (1) 10

(2) 6

(3) 8

(4) 4

Marked Question is multiple answer

PREVIOUS YEARS QUESTIONS				ANSWER KEY			Ex <i>e</i> rcise-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	4	4	2	3	3	4	3	1	4
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	3	3	1	2	2	4	3	1	3	1
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	4	3,4	2	3	3	2	3	4