- 1. If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then the locus of its centre is-
 - $(1) 2ax + 2by + (a^2 + b^2 + 4) = 0$
 - (2) $2ax + 2by (a^2 + b^2 + 4) = 0$
 - (3) $2ax 2by + (a^2 + b^2 + 4) = 0$
 - $(4) 2ax 2by (a^2 + b^2 + 4) = 0$
- **2.** A variable circle passes through the fixed point A(p, q) and touches x-axis. The locus of the other end of the diameter through A is-

[AIEEE-2004]

- (1) $(x p)^2 = 4qu$
- (2) $(x q)^2 = 4py$
- (3) $(y p)^2 = 4qx$
- $(4) (y q)^2 = 4px$
- 3. If the lines 2x + 3y + 1 = 0 and 3x y 4 = 0 lie along diameters of a circle of circumference 10π , then the equation of the circle is- [AIEEE-2004]
 - $(1) x^2 + y^2 2x + 2y 23 = 0$
 - (2) $x^2 + y^2 2x 2y 23 = 0$
 - (3) $x^2 + y^2 + 2x + 2y 23 = 0$
 - $(4) x^2 + y^2 + 2x 2y 23 = 0$
- **4.** The intercept on the line y = x by the circle $x^2 + y^2 2x = 0$ is AB. Equation of the circle on AB as a diameter is-
 - (1) $x^2 + y^2 x y = 0$
 - (2) $x^2 + v^2 x + v = 0$
 - (3) $x^2 + y^2 + x + y = 0$
 - $(4) x^2 + v^2 + x v = 0$
- 5. If the circles $x^2 + y^2 + 2ax + cy + a = 0$ and $x^2 + y^2 3ax + dy 1 = 0$ intersect in two distinct point P and Q then the line 5x + by a = 0 passes through P and Q for [AIEEE-2005]
 - (1) exactly one value of a
 - (2) no value of a
 - (3) infinitely many values of a
 - (4) exactly two values of a
- 6. A circle touches the x-axis and also touches the circle with centre at (0, 3) and radius 2. The locus of the centre of the circle is-
 - (1) an ellipse
- (2) a circle
- (3) a hyperbola
- (4) a parabola

- 7. If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = p^2$ orthogonally, then the equation of the locus of its centre is [AIEEE-2005]
 - (1) $x^2 + y^2 3ax 4by + (a^2 + b^2 p^2) = 0$
 - (2) $2ax + 2by (a^2 b^2 + p^2) = 0$
 - (3) $x^2 + y^2 2ax 3by + (a^2 b^2 p^2) = 0$
 - (4) $2ax + 2by (a^2 + b^2 + p^2) = 0$
- **8.** If the pair of lines $ax^2 + 2(a + b)xy + by^2 = 0$ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector then-

[AIEEE-2005]

- $(1) 3a^2 10ab + 3b^2 = 0$
- $(2) 3a^2 2ab + 3b^2 = 0$
- $(3) 3a^2 + 10ab + 3b^2 = 0$
- $(4) 3a^2 + 2ab + 3b^2 = 0$
- **9.** Let C be the circle with centre (0, 0) and radius 3 units. The equation of the locus of the mid points of the chords of the circle C that subtend an angle
 - of $\frac{2\pi}{3}$ at its centre is [AIEEE-2006, IIT-1996]

(1)
$$x^2 + y^2 = 1$$
 (2) $x^2 + y^2 = \frac{27}{4}$

(3)
$$x^2 + y^2 = \frac{9}{4}$$
 (4) $x^2 + y^2 = \frac{3}{2}$

- 10. Consider a family of circles which are passing through the point (-1, 1) and are tangent to x-axis. If (h, k) are the co-ordinates of the centre of the circles, then the set of values of k is given by the interval-
 - (1) 0 < k < 1/2
- (2) $k \ge 1/2$
- $(3) -1/2 \le k \le 1/2$
- (4) $k \le 1/2$
- **11.** The point diametrically opposite to the point (1, 0) on the circle $x^2 + y^2 + 2x + 4y 3 = 0$ is-

[AIEEE-2008]

- (1)(3, -4) (2)(-3, 4) (3)(-3, -4) (4)(3, 4)
- **12.** Three distinct points A, B and C are given in the 2–dimensional coordinate plane such that the ratio of the distance of any one of them from the point (1, 0) to the distance from the point (-1, 0) is equal
 - to $\frac{1}{3}$. Then the circumcentre of the triangle ABC

is at the point :- [AIEEE-2009]

(1)
$$\left(\frac{5}{2}, 0\right)$$
 (2) $\left(\frac{5}{3}, 0\right)$ (3) (0, 0) (4) $\left(\frac{5}{4}, 0\right)$

CIRCLE JEE MAIN

13. If P and Q are the points of intersection of the circles $x^2 + y^2 + 3x + 7y + 2p - 5 = 0$ and $x^2 + y^2 + 2x + 2y - p^2 = 0$, then there is a circle passing through P, Q and (1, 1) for :-

[AIEEE-2009]

- (1) All except two values of p
- (2) Exactly one value of p
- (3) All values of p
- (4) All except one value of p
- 14. For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is :-

[AIEEE-2010]

- (1) There is a regular polygon with $\frac{r}{R} = \frac{1}{2}$
- (2) There is a regular polygon with $\frac{r}{R} = \frac{1}{\sqrt{2}}$
- (3) There is a regular polygon with $\frac{\mathbf{r}}{\mathbf{R}} = \frac{2}{3}$
- (4) There is a regular polygon with $\frac{\mathbf{r}}{\mathbf{p}} = \frac{\sqrt{3}}{2}$
- The circle $x^2 + y^2 = 4x + 8y + 5$ intersects the line **15**. 3x - 4y = m at two distinct points if :-

[AIEEE-2010]

- (1) 85 < m < -35
- (2) 35 < m < 15
- (3) 15 < m < 65
- (4) 35 < m < 85
- The two circles $x^2 + y^2 = ax$ and $x^2 + y^2 = c^2$ (c > 0) **16**. touch each other if :-[AIEEE-2011]
 - (1) a = 2c
- (2) |a| = 2c
- (3) 2 |a| = c
- (4) |a| = c
- **17**. The equation of the circle passing through the points (1, 0) and (0, 1) and having the smallest radius is-

[AIEEE-2011]

- $(1) x^2 + y^2 + x + y 2 = 0$
- $(2) x^2 + y^2 2x 2y + 1 = 0$
- (3) $x^2 + y^2 x y = 0$
- $(4) x^2 + y^2 + 2x + 2y 7 = 0$
- **18**. The length of the diameter of the circle which touches the x-axis at the point (1, 0) and passes through the point (2, 3) is: [AIEEE-2012]
 - (1) 5/3

(2) 10/3

(3) 3/5

(4) 6/5

- 19. The circle passing through (1, -2) and touching the axis of x at (3, 0) also passes through the point: [JEE (Main)-2013]
 - (2) (2, -5) (3) (5, -2) (4) (-2, 5)(1) (-5, 2)

- 20. If a circle C passing through (4, 0) touches the circle $x^2 + y^2 + 4x - 6y - 12 = 0$ externally at a point (1, -1), then the radius of the circle C is :-

[JEE-Main (on line)-2013]

- $(1) \sqrt{57}$
- (2) $2\sqrt{5}$ (3) 4
- (4) 5
- If the circle $x^2 + y^2 6x 8y + (25 a^2) = 0$ touches 21. the axis of x, then a equals :-

[JEE-Main (on line)-2013]

- $(1) \pm 4$
- $(2) \pm 3$
- (3) 0
- $(4) \pm 2$
- 22. The radius of a circle, having minimum area, which touches the curve $y = 4 - x^2$ and the lines, y = |x|[JEE(Main)-2017]
 - (1) $4(\sqrt{2}+1)$
- (2) $2(\sqrt{2}+1)$
- (3) $2(\sqrt{2}-1)$
- (4) $4(\sqrt{2}-1)$
- 23. The radius of the circle, having centre at (2, 1), whose one of the chord is a diameter of the circle $x^2 + y^2 - 2x - 6y + 6 = 0$ [IIT 2004 (Scr)]
 - $(1)\ 1$
- (2) 2
 - (3) 3
- $(4) \sqrt{3}$
- 24. Line 2x + 3y + 1 = 0 is a tangent to a circle at (1, -1). This circle is orthogonal to a circle which is drawn having diameter as a line segment with end points (0, -1) and (-2, 3). Find equation of circle.

[IIT 2004]

- $(1) 2x^2 + 2y^2 10x 5y + 1 = 0$
- (2) $x^2 + y^2 10x 5y + 1 = 0$
- (3) $x^2 + y^2 5x 5y + 1 = 0$
- (4) $2x^2 + 2v^2 5x 5v + 1 = 0$
- **25**. A circle is given by $x^2 + (y - 1)^2 = 1$, another circle C touches it externally and also the x-axis, then the locus of its centre is [IIT 2005 (Scr)]
 - (1) $\{(x, y) : x^2 = 4y\} \cup \{(x, y) : y \le 0\}$
 - (2) $\{(x, y) : x^2 + (y 1)^2 = 4\} \cup \{x, y\} : y \le 0\}$
 - (3) $\{(x, y) : x^2 = y\} \cup \{(0, y) : y \le 0\}$
 - $(4) \{(x, y) : x^2 = 4y\} \cup \{(0, y) : y \le 0\}$

26. Let ABCD be a quadrilateral with area 18, with side AB parallel to the side CD and AB = 2CD. Let AD be perpendicular to AB and CD. If a circle is drawn inside the quadrilateral ABCD touching all the sides, then its radius is

[IIT 2007]

- (1) 3
- (2) 2
- (3) 3/2
- $(4)\ 1$
- **27.** Tangents drawn from the point P(l, 8) to the circle $x^2 + y^2 6x 4y 11 = 0$ touch the circle at the points A and B. The equation of the circumcircle of the triangle PAB is [IIT 2009]
 - $(1) x^2 + y^2 + 4x 6y + 19 = 0$
 - $(2) x^2 + y^2 4x 10y + 19 = 0$
 - $(3) x^2 + y^2 2x + 6y 29 = 0$
 - $(4) x^2 + y^2 6x 4y + 19 = 0$
- **28.** The circle passing through the point (-1,0) and touching the y-axis at (0,2) also passes through the point [IIT 2011]
 - $(1) \left(-\frac{3}{2},0\right)$
- $(2) \left(-\frac{5}{2},2\right)$
- $(3) \left(-\frac{3}{2}, \frac{5}{2}\right)$
- (4) (-4,0)

29. The straight line 2x - 3y = 1 divides the circular region $x^2 + y^2 \le 6$ into two parts. If

$$S = \left\{ \left(2, \frac{3}{4}\right), \left(\frac{5}{2}, \frac{3}{4}\right), \left(\frac{1}{4}, -\frac{1}{4}\right), \left(\frac{1}{8}, \frac{1}{4}\right)^{1}\right\},$$

then the number of point(s) in S lying inside the smaller part is:- [IIT-2011]

 $(1)\ 1$

(2)2

JEE MAIN

(3) 3

- (4) 4
- **30.** The locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line 4x 5y = 20 to the circle $x^2 + y^2 = 9$ is[IIT 2012]

$$(1) 20(x^2 + y^2) - 36x + 45y = 0$$

$$(2) 20(x^2 + y^2) + 36x - 45y = 0$$

(3)
$$36(x^2 + y^2) - 20x + 45y = 0$$

$$(4) \ 36(x^2 + y^2) + 20x - 45y = 0$$

PREVIOUS YEARS QUESTIONS				ANSWER KEY			Exercise-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	1	1	1	2	4	4	4	3	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	3	4	4	3	2	4	3	2	3	4
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	4	3	1	4	2	2	4	2	1