CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATIONS - PYQ

If $f(x) = \begin{cases} x & x \in Q \\ -x & x \notin Q \end{cases}$, then f is continuous at-

[AIEEE 2002]

- (1) Only at zero
- (2) only at 0, 1
- (3) all real numbers
- (4) all rational numbers
- If $y = (x + \sqrt{1 + x^2})^n$ then $(1 + x^2)y_2 + xy_1 =$ 2.

[AIEEE-2002]

 $(1) ny^2$

(2) n^2y

(3) n^2v^2

- (4) None of these
- If for all values of x & y; f(x + y) = f(x).f(y) and 3. f(5) = 2, f'(0) = 3, then f'(5) is-[AIEEE-2002] (1) 3 (2) 4
- (3) 5
- (4) 6
- If $f(x) = \begin{cases} xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \text{ then } f(x) \text{ is- [AIEEE 2003]} \\ 0, & x = 0 \end{cases}$ 4.
 - (1) discontinuous everywhere
 - (2) continuous as well as differentiable for all x
 - (3) continuous for all x but not differentiable at x=0
 - (4) neither differentiable nor continuous at x = 0
- Let $f(x) = \frac{1-\tan x}{4x-\pi}$, $x \neq \frac{\pi}{4}$, $x \in \left[0, \frac{\pi}{2}\right]$, If f(x) is 5.

continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is- [AIEEE 2004]

 $(1)\ 1$

- (3) -1/2
- (4) 1
- The set of points where $f(x) = \frac{x}{1+|x|}$ is 6.

differentiable

[AIEEE-2006]

- (1) $(-\infty, -1) \cup (-1, \infty)$ (2) $(-\infty, \infty)$ (3) $(0, \infty)$ (4) $(-\infty, 0) \cup (0, \infty)$

- If $x^m ext{.} y^n = (x + y)^{m+n}$, then $\frac{dy}{dx}$ is [AIEEE-2006] 7.
 - (1) $\frac{x+y}{yy}$ (2) xy (3) $\frac{x}{y}$ (4) $\frac{y}{y}$

- The function $f: R/\{0\} \rightarrow R$ given by 8.
 - $f(x) = \frac{1}{x} \frac{2}{e^{2x} 1}$ can be made continuous at
 - x = 0 by defining f(0) as-
- [AIEEE 2007]

- (1)2
- (2) -1
- (3) 0
- $(4)\ 1$

Let y be an implicit function of x defined by $x^{2x} - 2x^x \cot y - 1 = 0$. Then y'(1) equals

[AIEEE-2009]

 $(1) \log 2$

 $(2) - \log 2$

(3) - 1

- $(4)\ 1$
- **10**. Let $f: (-1, 1) \rightarrow R$ be a differentiable function with f(0) = -1 and f'(0) = 1. Let $g(x) = [f(2f(x) + 2)]^2$. Then g'(0) [AIEEE-2010]
 - (1) 4

(2) -4

(3) 0

- (4) -2
- 11. If function f(x) is differentiable at x = a then

$$\lim_{x \to a} \frac{x^2 f(a) - a^2 f(x)}{x - a}$$
 [AIEEE-2011]

- (1) $2a f(a) + a^2 f'(a)$
- (2) $-a^2 f'(a)$
- (3) $af(a) a^2 f'(a)$
- (4) 2af(a) -a² f'(a)
- 12. $\frac{d^2x}{dv^2}$ equal to

[AIEEE-2011]

- (1) $\left(\frac{d^2y}{dy^2}\right)^{-1}$
- $(2) \left(\frac{d^2y}{dy^2}\right)^{-1} \left(\frac{dy}{dy}\right)^{-3}$
- (3) $\left(\frac{d^2y}{dy^2}\right) \left(\frac{dy}{dy}\right)^{-2}$ (4) $-\left(\frac{d^2y}{dy^2}\right) \left(\frac{dy}{dy}\right)^{-3}$
- 13. The values of p and q for which the function

$$f(x) = \begin{cases} \frac{\sin(p+1)x + \sin x}{x} &, & x < 0 \\ q &, & x = 0 \\ \frac{\sqrt{x + x^2} - \sqrt{x}}{x^{\frac{3}{2}}} &, & x > 0 \end{cases}$$

is continuous for all x in R, are :- [AIEEE 2011]

- (1) $p = -\frac{3}{2}$, $q = \frac{1}{2}$ (2) $p = \frac{1}{2}$, $q = \frac{3}{2}$
- (3) $p = \frac{1}{2}$, $q = -\frac{3}{2}$ (4) $p = \frac{5}{2}$, $q = \frac{1}{2}$
- **14.** The function $f(x) = [x] \cos\left(\frac{(2x-1)\pi}{2}\right)$, [] denotes

the greatest integer function, is discontinuous at-

[AIEEE-2012]

- (1) all x
- (2) all integer points
- (3) no x
- (4) x which is not an integer

15. If $f(x) = a | \sin x | + be^{|x|} + c |x|^3$, where a, b, $c \in R$, is differentiable at x = 0, then

[AIEEE-2012 (Online)]

- (1) c = 0, a = 0, b is any real number
- (2) a = 0, b and c are any real numbers
- (3) b = 0, c = 0, a is any real number
- (4) a = 0, b = 0, c is any real number
- **16**. If x + |y| = 2y then y as a function of x, at [AIEEE-2012 (Online)]
 - (1) Neither continuous nor differentiable
 - (2) Continuous as well as differentiable
 - (3) Differentiable but not continuous
 - (4) Continuous but not differentiable
- 17. If $f(x) = \sin(\log x)$ and $y = f\left(\frac{2x+3}{3-2x}\right)$, then $\frac{dy}{dx}$ equals [AIEEE-2012 (Online)]

(1)
$$\frac{12}{(3-2x)^2}\cos\left[\log\left(\frac{2x+3}{3-2x}\right)\right]$$

$$(2) \sin \left[\log \left(\frac{2x+3}{3-2x} \right) \right]$$

(3)
$$\frac{12}{(3-2x)^2} \sin \left[\log \left(\frac{2x+3}{3-2x} \right) \right]$$

- (4) $\frac{12}{(3-2x)^2}$
- If $y = \sec(\tan^{-1}x)$, then $\frac{dy}{dx}$ at x = 1 is equal to

[JEE (Main)-2013]

(1) $\frac{1}{\sqrt{2}}$

(2) $\frac{1}{2}$

(3) 1

- $(4) \sqrt{2}$
- 19. If the function.

$$g(x) = \begin{cases} k\sqrt{x+1} \ , & 0 \le x \le 3 \\ mx+2 \ , & 3 < x \le 5 \end{cases}$$

is differentiable, then value of k + m is [JEE (Main)-2015]

(1) $\frac{10}{3}$

(2) 4

(3) 2

 $(4) \frac{16}{5}$

- 20. For $x \in R$, $f(x) = \lceil \log 2 - \sin x \rceil$ and g(x) = f(f(x)), then: [JEE (Main)-2016]
 - (1) g is differentiable at x = 0 and $g'(0) = -\sin(\log 2)$
 - (2) g is not differentiable at x = 0
 - (3) $g'(0) = \cos(\log 2)$
 - (4) $g'(0) = -\cos(\log 2)$
- If for $x \in \left(0, \frac{1}{4}\right)$, the derivative of $\tan^{-1}\left(\frac{6x\sqrt{x}}{1-9x^3}\right)$

is $\sqrt{x \cdot g(x)}$, then g(x) equals:

[JEE (Main)-2017]

(1)
$$\frac{3}{1+9x^3}$$
 (2) $\frac{9}{1+9x^3}$ (3) $\frac{3x\sqrt{x}}{1-9x^3}$ (4) $\frac{3x}{1-9x^3}$

- 22. Let $f: R \to R$ is a function which is defined by f(x)= $\max \{x, x^3\}$ set of points on which f(x) is not differentiable is-[IIT-2001]
 - $(1) \{-1, 1\}$
- $(2) \{-1, 0\}$
- $(3) \{0, 1\}$
- $(4) \{-1, 0, 1\}$
- 23. Which of the following function is differentiable at x = 0? [IIT-2001]
 - $(1) \cos(|x|) + |x| \qquad (2) \cos(|x|) |x|$
 - (3) $\sin(|x|) + |x|$ (4) $\sin(|x|) |x|$
- 24. Let y be a function of x, such that log(x + y) - 2xy = 0, then y'(0) is-(1) 0(2) 1
- (3) 1/2(4) 3/2
- 25. If $x\cos y + y\cos x = \pi$, then y''(0) =[IIT-2005] (2) $-\pi$ (1) π
 - (3) 0

26.

- (4) 1
- If f''(x) = -f(x) and g(x) = f'(x)

and
$$F(x) = \left(f\left(\frac{x}{2}\right)\right)^2 + \left(g\left(\frac{x}{2}\right)\right)^2$$

and given that F(5) = 5, then F(10) is- [IIT-2006]

(1) 15

(2) 0

(3)5

- (4) 10
- *27. Let $f: R \to R$ be a function such that $f(x + y) = f(x) + f(y), \forall x, y \in R.$

If f(x) is differentiable at x = 0, then [IIT-2011]

- (1) f(x) is differentiable only in a finite interval containing zero
- (2) f(x) is continuous $\forall x \in R$
- (3) f(x) is constant $\forall x \in R$
- (4) f(x) is differentiable except at finitely many points

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATIONS

*28. If
$$f(x) = \begin{cases} -x - \frac{\pi}{2} & , & x \le -\frac{\pi}{2} \\ -\cos x & , & -\frac{\pi}{2} < x \le 0 \text{ then} \\ x - 1 & , & 0 < x \le 1 \\ \ell n x & , & x > 1 \end{cases}$$

[IIT-2011]

(1)
$$f(x)$$
 is continuous at $x = -\frac{\pi}{2}$

- (2) f(x) is not differentiable at x = 0(3) f(x) is differentiable at x = 1
- (4) f(x) is differentiable at $x = -\frac{3}{2}$
- Let $f: R \to R$ and $g: R \to R$ be respectively 29. given by f(x) = |x| + 1 and $g(x) = x^2 + 1$. Define $h: R \rightarrow R$ by

$$h(x) = \begin{cases} \max\{f(x), g(x)\} & \text{if } x \le 0, \\ \min\{f(x), g(x)\} & \text{if } x > 0. \end{cases}$$

The number of points at which h(x) is not differentiable is [JEE (Advanced)-2014]

(1) 1

(2) 2

(3) 3

(4) 0

30. Let
$$y(x) = \cos(3\cos^{-1}x)$$
, $x \in [-1, 1]$, $x \neq \pm \frac{\sqrt{3}}{2}$.

Then
$$\frac{1}{y(x)}\left\{(x^2-1)\frac{d^2y(x)}{dx^2}+x\frac{dy(x)}{dx}\right\}$$
 equals

[JEE (Advanced)-2014]

(1) 1

(2) 2

(3) 8

(4)9

* Marked Questions are multiple answer										
PREVIOUS YEARS QUESTIONS				ANSWER KEY			Exercise-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	1	2	4	3	3	2	4	4	3	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	4	1	3	4	4	3	1	3	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	2	4	4	2	1	3	2,3	1,2,3,4	3	4