PREVIOUS YEARS' QUESTIONS

EXERCISE-II

- When two reactants A and B are mixed to give 1. products C and D, the reaction quotient Q, at the initial stages of the reaction:
 - (1) is zero
 - (2) decrease with time
 - (3) independent of time
 - (4) increases with time
- For the reversible reaction: 2.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ at 500°C. The value of K_n is 1.44×10^{-5} , when partial pressure is measured in atmospheres. The corresponding value of K_c with concentration in mol L⁻¹ is: [JEE 2000]

- (1) $1.44 \times 10^{-5} / (0.082 \times 500)^2$
- $(2) 1.44 \times 10^{-5} / (8.314 \times 773)^2$
- (3) $1.44 \times 10^{-5} / (0.082 \times 500)^2$
- (4) $1.44 \times 10^{-5} / (0.082 \times 773)^{-2}$
- 3. At constant temperature, the equilibrium constant (K_p) for the decomposition reaction. $N_2O_4 \rightleftharpoons 2NO_2$ is expressed by $K_p = 4x^2P/(1 - x^2)$ where P is pressure, x is extent of decomposition. Which of the following statement is true? [JEE 2001]
 - (1) K_p increases with increase of P
 - (2) K_p increases with increase of x
 - (3) K_p increases with decrease of x
 - (4) K_p remains constant with change in P or x
- 4. One of the following equilibrium is not affected by change in volume of the flask -[AIEEE-2002]
 - (1) $PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$
 - (2) $N_2(g) + 3H_2(g) = 2NH_3(g)$
 - (3) $N_2(g) + O_2 = 2NO(g)$
 - (4) $SO_2Cl_2(g) \longrightarrow SO_2(g) + Cl_2(g)$
- 5. Consider the following equilibrium in a closed container : $N_2O_4(g) \rightleftharpoons 2NO_2(g)$.

At a fixed temperature, the volume of the reaction container is halved. For this change, which of the following statements holds true regarding the equilibrium constant (K_D) and degree of dissociation (α) :

- (1) Neither K_p nor α changes [JEE 2002]
- (2) Both K_p and α change
- (3) K_p changes, but α does not change
- (4) K_p does not change, but α changes

6. For the reaction equilibrium,

 N_2O_4 (g) \Longrightarrow 2NO₂(g) the concentration of N_2O_4 and NO_2 at equilibrium are 4.8×10^{-2} and 1.2×10^{-2} mol L⁻¹ respectively. The value of K_C for the reaction is-[AIEEE-2003]

- (1) 3×10^{-3} mol L⁻¹
- (2) $3 \times 10^3 \text{ mol L}^{-1}$
- (3) $3.3 \times 10^2 \text{ mol L}^{-1}$
- (4) 3×10^{-1} mol L⁻¹
- 7. What is the equilibrium expression for the reaction $P_{4(s)} + 5O_{2(g)} = P_4O_{10(s)}$? [AIEEE-2004]
 - (1) $K_C = [P_4O_{10}] / [P_4] [O_2]^5$
 - (2) $K_C = [P_4 O_{10}] / 5 [P_4] [O_2]$
 - (3) $K_C = [O_2]^5$
 - (4) $K_C = 1 / [O_2]^5$
- For the reaction $CO_{(q)} + Cl_{2(q)} \longrightarrow COCl_{2(q)}$ the 8.

 $\frac{K_P}{K_C}$ is equal to -[AIEEE-2004]

(1) $\frac{1}{RT}$

- (2) RT
- (3) √RT
- (4) 1.0
- 9. The equilibrium constant for the reaction $N_{2(g)}$ + $O_{2(g)}$ \Longrightarrow $2NO_{(q)}$ at temperature T is 4×10^{-4} . The value of K_C for the reaction

$$NO_{(g)} = \frac{1}{2}N_{2(g)} + \frac{1}{2}O_{2(g)}$$
 [AIEEE-2004]

- $(1) 2.5 \times 10^2$
- (2)50
- $(3) 4 \times 10^{-4}$
- (4) 0.02
- **10**. For the reaction $2NO_{2(q)} = 2NO_{(q)} + O_{2(q)}$, $(K_c = 1.8 \times 10^{-6} \text{ at } 184^{\circ} \text{ C}) \text{ (R} = 0.831 \text{ kJ(mol. K))}$ When K_p and k_c are compared at $184^{\circ}C$ it is found that [AIEEE-2005]
 - (1) K_p is less than K_c
 - (2) K_p is greater than K_c
 - (3) Whether K_{p} is greater than, less than or equal to K_c depends upon the total gas pressure
 - (4) $K_{p} = K_{c}$
 - The exothermic formation of CIF₃ is represented 11. by the equation $Cl_{2(g)} + 3F_{2(g)} = 2ClF_{3(g)}$; $\Delta H_r = -329 \text{ kJ}$

Which of the following will increase the quantity of ClF_3 in an equilibrium mixture of Cl_2 , F_2 and ClF_3 ?

- (1) Removing Cl₂
- (2) Increasing the temperature
- (3) Adding F_2
- (4) Increasing the volume of the container

CHEMICAL EQUILIBRIUM

A schematic plot of ℓn K_{eq} verus inverse of temperature for a reaction is shown below. The reaction must be [AIEEE-2005]

- (1) endothermic
- (2) exothermic
- (3) highly spontaneous at ordinary temperature
- (4) one with negligible enthalpy change
- Phosphorus pentachloride dissociates as follows, in **13**. a closed reaction vessel,

[AIEEE-2006]

$$PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$$

If total pressure at equilibrium of the reaction mixture is P and degree of dissociation of PCl₅ is x, the partial pressure of PCl₃ will be-

$$(1) \left(\frac{2x}{1-x} \right) P$$

$$(1) \left(\frac{2x}{1-x}\right) P \qquad (2) \left(\frac{x}{x-1}\right) P$$

$$(3) \left(\frac{x}{1-x}\right) P$$

$$(4) \left(\frac{x}{x+1}\right) P$$

14. The equilibrium constant for the reaction

$$SO_3(g) \longrightarrow SO_2(g) + \frac{1}{2}O_2(g)$$
 is $K_C = 4.9 \times 10^{-2}$.

The value of K_C for the reaction

 $2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$ will be (1) 2.40×10^{-3}

- (2) 9.8×10^{-2}
- $(3) 4.9 \times 10^{-2}$
- (4)416
- If $Ag^+ + NH_3 \rightleftharpoons [Ag(NH_3)]^+$; $K_1 = 1.6 \times 10^3$ and **15**. $[Ag(NH_3)]^+ + NH_3 \rightleftharpoons [Ag(NH_3)_2]^+ ; K_2 = 6.8 \times 10^3$ The formation constant of $[Ag(NH_3)_9]^+$ is :

[JEE 2006]

 $(1) 6.08 \times 10^{-6}$

 $(2) 6.8 \times 10^{-6}$

(3) 1.6×10^3

(4) 1.088×10^7

The equlibrium constants K_{p_1} and K_{p_2} for the **16**. reaction $X \longrightarrow 2Y$ and $Z \longrightarrow P + Q$, respectively are in the ratio of 1:9. If the degree of dissociation of X and Z be equal then the ratio of total pressure at these equilibria is

[AIEEE-2008]

(1) 1 : 36

(2) 1 : 1

(3) 1 : 3

(4) 1 : 9

A vessel at 1000 K contains CO₂ with a pressure **17**. of 0.5 atm. Some of the CO₂ is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :-

[AIEEE-2011]

- (1) 0.3 atm
- (2) 0.18 atm
- (3) 1.8 atm
- (4) 3 atm

18. The equilibrium constant (K_C) for the reaction $N_2(g) + O_2(g) \longrightarrow 2NO(g)$ at temperature T is 4×10^{-4} . The value of K_C for the reaction.

 $NO(g) \longrightarrow \frac{1}{2} N_2(g) + \frac{1}{2} O_2(g)$ at the same temperature is :-[AIEEE-2012]

- (1) 50.0
- (2) 0.02
- (3) 2.5×10^2
- $(4) 4 \times 10^{-4}$
- 19. One mole of $O_2(g)$ and two moles of $SO_2(g)$ were heated in a closed vessel of one litre capacity at 1098 K. At equilibrium 1.6 moles of SO₃(g) were found. The equilibrium constant K_C of the reaction [JEE-MAINS(online)-12] would be :-

(1)60

(2)80

(3) 30

(4) 40

- 20. K_1 , K_2 and K_3 are the equilibrium constants of the following reactions (I), (II) and (III), respectively
 - $N_2 + 2O_2 \rightleftharpoons 2NO_2$
 - $2NO_2 \rightleftharpoons N_2 + 2O_2$

$$\text{(III)} \quad NO_2 \rightleftharpoons \frac{1}{2} N_2 + O_2$$

The correct relation from the following is:

[JEE-MAINS(online)-12]

(1)
$$K_1 = \sqrt{K_2} = K_3$$
 (2) $K_1 = \frac{1}{K_2} = \frac{1}{K_3}$

(3)
$$K_1 = \frac{1}{K_2} = K_3$$
 (4) $K_1 = \frac{1}{K_2} = \frac{1}{(K_3)^2}$

21. The value of Kp for the equilibrium reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ is 2. The percentage dissociation of $N_2O_4(g)$ at a pressure of 0.5 atm is

[JEE-MAINS(online)-12]

- (1)71
- (2)50

(3)88

- (4)25
- 22. 8 mol of AB₃(g) are introduced into a 1.0 dm³ vessel.

If it dissociates as $2AB_3(g) \rightleftharpoons A_2(g) + 3B_2(g)$

At equilibrium, 2mol of A_2 are found to be present. The equilibrium constant of this reaction is :-

[JEE-MAINS(online)-12]

- (1) 36
- (2) 3

- (3) 27
- (4) 2
- 23. The thermal dissociation equilibrium of CaCO₃(s) is studied under different conditions.

 $CaCO_{3}(s) \rightleftharpoons CaO(s) + CO_{3}(g)$ For this equilibrium, the correct statement(s) is(are)

- (1) ΔH is dependent on T
- (2) K is independent of the initial amount of CaCO₃
- (3) K is dependent on the pressure of CO₂ at a given T
- (4) ΔH is independent of the catalyst, if any

In reaction A + 2B \rightleftharpoons 2C + D, initial concentration of B was 1.5 times of |A|, but at equilibrium the concentrations of A and B became equal. The equilibrium constant for the reaction is:

[JEE-MAINS(online)-13]

- (1) 4
- (2) 6
- (3) 12

- (4) 8
- $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g), K_1$ **25**.

$$N_{2}(g) + O_{2}(g) \rightleftharpoons 2NO(g), K_{2}$$

$$H_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons H_2O(g), K_3$$
 (3)

The equation for the equilibrium constant of the reaction

$$2 \text{ NH}_3(g) + \frac{5}{2} O_2(g) \implies 2 \text{NO}(g) + 3 \text{H}_2 O(g), (K_4)$$

in terms of K_1 , K_2 and K_3 is :

[JEE-MAINS(online)-13]

(1)
$$\frac{K_1 K_3^2}{K_2}$$
 (2) $\frac{K_2 K_3^3}{K_1}$ (3) $\frac{K_1 K_2}{K_3}$ (4) $K_1 K_2$

For the reaction $SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons SO_{3(g)}$, if

 $K_p = K_C (RT)^x$ where the symbols have usual meaning then the value of x is: (Assuming ideality) [JEE-MAINS-14]

- (2) 1
- (3) -1 (4) $-\frac{1}{2}$
- **27**. For the decomposition of the compound, represented as

$$NH_2COONH_4(s) = 2NH_3(g) + CO_2(g)$$

the $K_P=2.9 \times 10^{-5}$ atm³.

If the reaction is started with 1 mol of the compound, the total pressure at equilibrium would be

[JEE-MAINS(online)-14]

- (1) 38.8×10^{-2} atm
- (2) 1.94×10^{-2} atm
- (3) 5.82×10^{-2} atm
- (4) 7.66×10^{-2} atm

28. The equilibrium constants at 298 K for a reaction $A + B \longrightarrow C + D$ is 100. If the initial concentration of all the four species were 1 M each, then equilibrium concentration of D (in mol L^{-1}) will be

[JEE-MAINS-16]

- (1) 1.182
- (2) 0.182
- (3) 0.818
- (4) 1.818
- 29. The following reaction occurs in the Blast Furnace where iron ore is reduced to iron metal:

$$Fe_2O_3(s) + 3CO(g) \rightleftharpoons 2 Fe(l) + 3CO_2(g)$$

[JEE-MAINS(online)-17]

Using the Le Chatelier's principle, predict which one of the following will **not** disturb the equilibrium?

- (1) Removal of CO₂
- (2) Addition of Fe₂O₃
- (3) Addition of CO₂
- (4) Removal of CO
- 30. For a reaction taking place in a container in equilibrium with its surroundings, the effect of temperature on its equilibrium constant K in terms of change in entropy is described by [JEE 2017]
 - (1) With increase in temperature, the value of K for exothermic reaction decreases because the entropy change of the system is positive
 - (2) With increase in temperature, the value of K for endothermic reaction increases because unfavourable change in entropy of the surroundings decreases
 - (3) With increase in temperature, the value of K for exothermic reaction decreases because favourable change in entropy of the surroundings decreases
 - (4) With increase in temperature, the value of K for endothermic reaction increases because the entropy change of the system negative

PREVIOUS YEARS QUESTIONS				ANSWER KEY			Exercise-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	4	4	4	3	4	1	4	1	2	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	3	2	4	4	4	1	3	1	2	4
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	3	1,2,4	1	2	4	3	4	2	2,3