s-Block Elements and Hydrogen & Its Compounds

EXERCISE-I

- The alkali metals which form normal oxide, peroxide 1. as well as super oxides are :-
 - (1) Na, Li

(2) K, Li

- (3) Li, Cs
- (4) K, Rb
- 2. The correct order of degree of hydration of M⁺ions of alkali metals is
 - (1) $Li^+ < K^+ < Na^+ < Rb^+ < Cs^+$
 - (2) $Li^+ < Na^+ < K^+ < Rb^+ < Cs^+$
 - (3) $Cs^+ < Rb^+ < K^+ < Na^+ < Li^+$
 - (4) $Cs^+ < Rb^+ < Na^+ < K^+ < Li^+$
- The hydroxide of IInd A metal, which has the lowest 3. value of solubility product $(K_{\rm sp})$ at normal temperature (25°C) is
 - (1) Ca(OH)₂
- $(2) Mg(OH)_2$
- (3) $Sr(OH)_{2}$
- (4) Be(OH)₂
- $Mg_2C_3 + H_2O \longrightarrow X$ (organic compound). 4. Compound X is
 - $(1) C_2 H_2$
- (2) CH₄
- (3) propyne
- (4) ethene
- 5. The alkaline earth metals, which do not impart any colour to Bunsen flame are
 - (1) Be and Mg
- (2) Mg and Ca
- (3) Be and Ca
- (4) Be and Ba
- $Y \stackrel{\Delta,205^{\circ}C}{\longleftarrow} CaSO_4 \cdot 2H_2O \stackrel{\Delta,120^{\circ}C}{\longrightarrow} X.$ 6.

X and Y are respectively

- (1) plaster of paris, dead burnt plaster
- (2) dead burnt plaster, plaster of paris
- (3) CaO and plaster of paris
- (4) plaster of paris, mixture of gases
- The correct order of basic-strength of oxides of 7. alkaline earth metals is
 - (1) BeO > MgO > CaO > SrO
 - (2) SrO > CaO > MgO > BeO
 - (3) BeO > CaO > MgO > SrO
 - (4) SrO > MgO > CaO > BeO
- Weakest base among KOH, NaOH, Ca(OH)₂ and 8. $Zn(OH)_2$ is
 - (1) Ca(OH)₂
- (2) KOH
- (3) NaOH
- $(4) Zn(OH)_2$
- $BeCl₂ + LiAlH₄ \longrightarrow X + LiCl + AlCl₃$ (1) X is LiH
 (2) X is BoH 9.
 - (1) X is LiH
- (2) X is BeH₂
- (3) X is $BeCl_2 \cdot 2H_2O$
- (4) None
- 10. A metal which is soluble in both water and liquid NH₃ separately -
 - (1) Cr

(2) Mn

(3) Ba

(4) Al

- MgBr_2 and MgI_2 are soluble in acetone because of 11.
 - (1) Their ionic nature
 - (2) Their coordinate nature
 - (3) Their metallic nature
 - (4) Their covalent nature
- Which of the following reaction produces hydrogen **12**. gas?
 - $(1) Mg + H_0O$
- (2) BaO₂ + HCl
- (3) $H_2S_2O_8 + H_2O$ (4) $Na_2O_2 + 2HCI$
- Hydrogen combines with other elements by **13**.
 - (1) Losing an electron
 - (2) Gaining an electron
 - (3) Sharing an electron
 - (4) Losing, gaining or sharing electron
- 14. The oxide that gives hydrogen peroxide on the treatment with a dilute acid is
 - $(1) MnO_{o}$
- (2) PbO₀
- (3) Na₂O₂
- $(4)TiO_{2}$
- **15**. In which of the following reaction hydrogen peroxide is a reducing agent
 - (1) $2\text{FeCl}_2 + 2\text{HCl} + \text{H}_2\text{O}_2 \longrightarrow 2\text{FeCl}_3 + 2\text{H}_2\text{O}$
 - (2) $Cl_2 + H_2O_2 \longrightarrow 2HCl + O_2$
 - (3) $2HI + H_2O_2 \longrightarrow 2H_2O + I_2$
 - $(4) H_9SO_3 + H_9O_9 \longrightarrow H_9SO_4 + H_9O$
- **16**. When zeolite (Hydrated sodium aluminium silicate) is treated with hard water the sodium ions are exchanged with
 - (1) OH-ions
- (2) SO₄²-ions
- (3) Ca²⁺ions
- (4) H⁺ions
- 17. Temporary hardness may be removed from water by adding
 - (1) CaCO₂
- (2) Ca(OH)₂
- (3) CaSO₄
- (4) HCl
- Which of the following can effectively remove all 18. types of hardness of water
 - (1) Soap
- (2) Washing soda
- (3) Slaked lime
- (4) None of these
- 19. Temporary unstable hardness of water due to presence of :-
 - (1) CaCl₂, MgSO₄
 - (2) Ca+2, Mg+2
 - (3) K⁺, CaCO₂
 - (4) Ca(HCO₃)₂, Mg(HCO₃)₂

s-Block Elements and Hydrogen & Its Compounds

20. Out of the following metals which will give H_2 on reaction with NaOH :

I:Zn,

II : Mg,

III : Al,

IV : Be

(1) I, II, III, IV

(2) I, III, IV

(3) II, IV

(4) I, III

- **21.** One of the following is an incorrect statement, point it out.
 - (1) Permanent hardness can be removed by boiling water
 - (2) Hardness of water effects soap consumption
 - (3) Temporary hardness is due to bicarbonates of Ca and Mg
 - (4) Permanent hardness is due to the soluble SO_4^{2-} , Cl^- of Ca and Mg
- **22.** All alkali metal superoxides contain the $[O_2^-]$ ion. They are—
 - (1) paramagnetic
 - (2) colored compounds
 - (3) oxidizing agents
 - (4) all of these
- 23. As compared to potassium, sodium has
 - (1) Lower electronegativity
 - (2) Higher ionization potential
 - (3) Larger atomic radius
 - (4) Lower melting point
- **24**. On passing excess of CO₂ in lime water, its milky appearance disappears because -
 - (1) Soluble Ca(OH), is formed
 - (2) Soluble $Ca(HCO_3)_2$ is formed
 - (3) Reaction becomes reversible
 - (4) Calcium compound evaporated

- **25.** Which of the following alkali metals has the biggest tendency of the half reaction $M_{(g)} \longrightarrow M^+_{(aq)} + e^-$
 - (1) Sodium (2) Lithium
 - (3) Potassium (4) Cesium
- **26**. Which of the following releases 0.2 moles of hydrogen on hydrolysis?
 - (1) 0.1 mole of LiH
 - (2) 0.2 mole of LiH
 - (3) 0.3 mole of LiH
 - (4) 0.4 mole of LiH
- **27.** Which of the following statement is not correct?
 - (1) LiOH is amphoteric in nature
 - (2) LiCl is soluble in pyridine
 - (3) Li₃N is stable while Na₃N doesn't exist even at room temperature
 - (4) BeO is amphoteric in nature
- **28**. There is loss in weight when mixture of Li₂CO₃ and Na₂CO₃.10H₂O is heated strongly. This loss is due to:
 - (1) Li₂CO₃
 - (2) Na₂CO₃.10H₂O
 - (3) both
 - (4) none
- **29.** Which of the following statements is incorrect?
 - (1) NaHCO₃ on heating gives Na₂CO₃
 - (2) Pure sodium metal dissolves in liquid ammonia to give blue solution
 - (3) NaOH reacts with glass to give sodium silicate
 - (4) Aluminium reacts with excess NaOH to give $Al(OH)_3$
- **30.** Which alkali metal on flame test gives red violet colour?
 - (1) Li

(2) Cs

(3) Na

(4) Rb

ANSWER KEY							Exercise-I			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	4	3	4	3	1	1	2	4	2	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	1	4	3	2	3	2	2	4	2
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	4	2	2	2	2	1	3	4	4