- 1. The following quantum no. are possible for how many orbitals n = 3, $\ell = 2$, m = +2
 - (1) 1

(2) 2

(3) 3

- (4) 4
- 2. The energy of second Bohr orbit of the hydrogen atom is -328 KJ/mol. Hence the energy of fourth Bohr orbit should be:
 - (1) -41 KJ/mol
- (2) -1312 KJ/mol
- (3) -164 KJ/mol
- (4) -82 KJ/mol
- 3. The measurement of the electron position is associated with an uncertainty in momentum, which is equal to 1×10^{-18} g cm s⁻¹ . the uncertainty in electron velocity is: (mass of electron = 9×10^{-28} g)
 - (1) 1×10^{11} cm s⁻¹
 - (2) $1 \times 10^9 \text{ cm s}^{-1}$
 - (3) $1 \times 10^6 \text{ cm s}^{-1}$
 - (4) 1×10^5 cm s⁻¹
- 4. Maximum number of electrons in a subshell of an atom is determined by the following:-
 - $(1) 2n^2$

- $(2) 4\ell + 2$
- $(3) \ 2\ell + 1$
- $(4) 4\ell 2$
- 5. A 0.66 kg ball is moving with a speed of 100 m/s. The associated wavelength will be

$$(h = 6.6 \times 10^{-34} \text{ Js}) :=$$

- (1) 6.6×10^{-34} m (2) 1.0×10^{-35} m (3) 1.0×10^{-32} m (4) 6.6×10^{-32} m
- The energies E_1 and E_2 of two radiations are 25 eV6. and 50eV respectively. The relation between their wavelengths i.e. λ_1 and λ_2 will be :
 - (1) $\lambda_1 = \lambda_2$
- (2) $\lambda_1 = 2\lambda_2$
- (3) $\lambda_1 = 4\lambda_2$
- $(4) \lambda_1 = \frac{1}{2} \lambda_2$
- **7**. Smallest wavelength occurs for
 - (1) Lyman series
 - (2) Balmar series
 - (3) Paschen series
 - (4) Brackett series
- 8. Maximum number of electrons in a subshell with $\ell = 3$ and n = 4 is:
 - (1) 10

(2) 12

(3) 14

- (4) 16
- The value of Planck's constant is 6.63×10^{-34} Js. 9. The speed of light is 3×10^{17} nm s⁻¹. Which value is closest to the wavelength in nanometer of a quantum of light with frequency of $6 \times 10^{15} \, \text{s}^{-1}$?
 - (1)75

(2) 10

(3) 25

(4) 50

- **10**. The energy of an electron of $2p_{_{\parallel}}$ orbital is
 - (1) greater than 2p_v orbital
 - (2) Less than 2p, orbial
 - (3) same as that of $2p_x$ and $2p_z$ orbital
 - (4) Equal to 2s orbital
- 11. A and B are two elements which have same atomic weight and are having atomic number 27 and 30 respectively. If the atomic weight of A is 57 then number of neutron in B is :-
 - (1) 27
- (2) 33
- (3) 30
- (4) 40
- **12**. Energy required to remove an e-from M shell of H-atom is 1.51 eV, then energy of Ist excited state will be :-
 - (1) -1.51 eV
- (2) + 1.51 eV
- (3) -3.4 eV
- (4) -13.6 eV
- **13**. Number of possible orbitals (all types) in n = 3energy level is :-
 - (1) 1

(2) 3

(3) 4

- (4) 9
- 14. When 3d orbital is complete, the new electron enters into :-
 - (1) 4p orbital
 - (2) 4f orbital
 - (3) 4s orbital
 - (4) 4d orbital
- **15**. Which orbital diagram does not obey Aufbau principle:-

- Species which are isoelectronic to one another are
 - (a) CN-
- (b) OH-
- (c) CH₃⁺
- (d) N_2

(e) CO

Correct Ans :-

- (1) a, b, c
- (2) a, c, d
- (3) a, d, e
- (4) b, c, d
- $\frac{h}{2\pi}$ is angular momentum in....orbit of He⁺ **17**.
 - (1) First
- (2) Second
- (3) Third
- (4) Infinite

- **18.** Ist shell energy of He+ is -54.4 eV. Then energy of its 2^{nd} shell is :-
 - (1) -54.4 eV
- (2) -13.6 eV
- (3) -27.2 eV
- (4) +27.2 eV
- **19.** Third line of Balmer series is produced by which transition in spectrum of H-atom
 - (1) 5 to 2
 - (2) 5 to 1
 - (3) 4 to 2
 - (4) 4 to 1
- **20.** The ratio of radii of 3rd and 2nd Bohr's orbits of hydrogen atom is:-
 - $(1) \ 3 : 2$
- (2) 4 : 9
- (3) 9 : 4
- (4) 9 : 1
- 21. A metal in its dipositive state has the electronic configuration 2, 8, 14 and has the atomic weight equal to 56. Number of neutrons in its nucleus would be
 - (1) 30
- (2) 32
- (3) 34
- (4) 28
- **22.** In Balmer series of hydrogen atom spectrum which electronic transition causes third line:
 - (1) Fifth Bohr orbit to second
 - (2) Fifth Bohr orbit to first
 - (3) Fourth Bohr orbit to second
 - (4) Fourth Bohr orbit to first
- **23.** The ratio between kinetic energy and the total energy of the electrons of hydrogen atom according to Bohr's model is:-
 - (1) 2 : 1
- (2) 1 : 1
- (3) 1 : -1
- (4) 1 : 2
- **24.** Correct statement is :-
 - (1) $K = 4s^1$, $Cr = 3d^4 4s^2$, $Cu = 3d^{10} 4s^2$
 - (2) $K = 4s^2$, $Cr = 3d^4 4s^2$, $Cu = 3d^{10} 4s^2$
 - (3) $K = 4s^2$, $Cr = 3d^5 4s^1$, $Cu = 3d^{10} 4s^2$
 - (4) $K = 4s^1$, $Cr = 3d^5 4s^1$, $Cu = 3d^{10} 4s^1$

- **25.** Which of the following pairs is correctly matched
 - (1) Isotopes ${}^{40}_{20}$ Ca, ${}^{40}_{19}$ K
 - (2) Isotones ${}_{14}^{30}$ Si, ${}_{15}^{31}$ P, ${}_{16}^{32}$ S
 - (3) Isobars ${}^{16}_{8}O, {}^{17}_{8}O, {}^{18}_{8}O$
 - (4) Isoelectronic N^{-3} , O^{-2} , Cr^{+3}
- **26.** The relative abundance of two rubidium isotopes of atomic weights 85 and 87 are 75% and 25% respectively. The average atomic wt. of rubidium is:-
 - (1)75.5
- (2)85.5
- (3)86.5

- (4)87.5
- **27.** The ratio of specific charge of a proton and an α -particle is :-
 - (1) 2 : 1
- (2) 1 : 2
- (3) 1 : 4
- (4) 1 : 1
- 28. In an atom $_{13}Al^{27}$. number of protons is (a) electron is (b) and neutron is (c). Hence ratio will be [in order c : b : a]
 - (1) 13:14:13
- (2) 13:13:14
- (3) 14:13:13
- (4) 14 : 13 : 14
- **29.** An isotone of $_{32}$ Ge⁷⁶ is :-
 - (i) 32Ge⁷⁷
- (ii) ₃₃As⁷⁷
- (iii) ₃₄Se⁷⁷
- (iv) 34Se⁷⁸
- (1) (ii) & (iii)
- (2) (i) & (ii)
- (3) (ii) & (iv)
- (4) (ii) & (iii) & (iv)
- **30.** For Li⁺², r₂ : r₅ will be :-
 - (1) 9 : 25
- (2) 4 : 25
- (3) 25 : 4
- (4) 25 : 9

ANSWE						KEY Exercise-l				
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	1	4	2	2	2	2	1	3	4	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	1	3	4	1	2	3	1	2	1	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	1	3	4	2	2	1	3	3	2