NUCLEAR PHYSICS & RADIOACTIVITY

EXERCISE-I

- **1.** A radioactive reaction is $_{92}U^{238} \rightarrow _{82}Pb^{206}$. How many α and β particles are emitted.
 - (1) 10α , 6β
- (2) 4 protons, 8 neutrons
- (3) 6 electrons 8 protons $\,$ (4) 6 $\beta,\,8\alpha$
- **2.** In the given nuclear reaction A, B, C, D, E represents

$$_{92}U^{238} \xrightarrow{\quad \alpha \quad} _{_{B}}Th^{^{A}} \xrightarrow{\quad \beta \quad} _{_{D}}Pa^{^{C}} \xrightarrow{\quad E \quad} _{92}U^{234}$$

- (1) A = 234, B = 90, C = 234, D = 91, $E = \beta$
- (2) A = 234, B = 90, C = 238, D = 94, $E = \alpha$
- (3) A = 238, B = 93, C = 234, D = 91, $E = \beta$
- (4) A = 234, B = 90, C = 234, D = 93, $E = \alpha$
- 3. The stable nucleus which has a radius half of Fe⁵⁶ is -
 - (1) Ca⁴⁰
- $(2) S^{16}$
- (3) Na²¹
- (4) Li⁷
- 4. The binding energies of the atoms of elements A and B are E_a and E_b respectively. Three atoms of the element B fuse to give one atom of element A. This fusion process is accompained by release of energy e. Then, E_a, E_b and e are related to each other as:
 - (1) $E_a + e = 3E_b$
- (2) $E_a = 3E_b$
- (3) $E_a e = 3E_b$
- $(4) E_a + 3E_b + e = 0$
- 5. If 200 MeV energy is released in the fission of a single U_{235} nucleus, the number of fissions required per second in a nuclear reactor are 3.125×10^{13} , find the power of the reactor.

(Given 1 eV = $1.6 \times 10^{-19} \text{ J}$)

- (1) 1 Kilo watt
- (2) 2 Kilo watt
- (3) 4 Kilo watt
- (4) 2.5 Kilo watt
- **6.** A nuclear reactor delivers a power of 10^9 W. What is the amount of fuel consumed by the reactor in one hour?
 - (1) 0.04 g
- (2) 0.08 g
- (3) 0.72 g
- (4) 0.96 g

7. A typical nuclear fusion reaction is given by :-

$$_{1}H^{2} + _{1}H^{2} \rightarrow _{1}H^{3} + _{1}H^{1} + 4.0 \text{ MeV}$$

 $_{1}H^{2} + _{1}H^{2} \rightarrow _{2}He^{4} + _{0}n^{1} + 17.6 \text{ MeV}$

The net result of two reactions is :-

$$3 \times_{1} H^{2} \rightarrow {}_{2} He^{4} + {}_{0} n^{1} + {}_{1} H^{1} + 21.6 \text{ MeV}$$

The energy released per nucleon of the reactant, in the above thermonuclear reaction is :-

- (1) 1.8 MeV
- (2) 3.6 MeV
- (3) 7.2 MeV
- (4) 21.6 MeV
- 8. The rest mass of the deuteron, ²₁H, is equivalent to an energy of 1876 MeV, the rest mass of a proton is equivalent to 939 MeV and that of a neutron to 940 MeV. A deuteron may disintegrate to a proton and a neutron if it:
 - (1) emits a γ -ray photon of energy 2 MeV
 - (2) captures a γ -ray photon of energy 2 MeV
 - (3) emits a γ -ray photon of energy 3 MeV
 - (4) captures a γ-ray photon of energy 3 MeV
- **9.** If there is a mass defect of 0.1% in nuclear fission, then the energy released in the fission of 1 kg mass would be-
 - (1) 2.5×10^5 kWh
- (2) 2.5×10^7 kWh
- (4) $2.5 \times 10^9 \text{ kWh}$
- (4) $2.4 \times 10^{-7} \text{ kWH}$
- 10. If the average number of neutrons liberated per fission is 2.5 and energy released per fission is 250 MeV then the number of neutrons generated per second in a nuclear reactor of 100 MW, will be :-
 - (1) 2.5×10^{18}
- (2) 2.5×10^{19}
- (3) 6.25×10^{18}
- (4) 6.25×10^{19}
- 11. The half life of a radioactive substance is 20 minutes. The approximate time interval $(t_2 t_1)$ between the time t_2 when $\frac{4}{5}$ of it has decayed and time t_1 when
 - $\frac{1}{5}$ of it had decayed is :-
 - (1) 20 min (2) 28 min (3) 40 min (4) 14 min

12. Half life of a radioactive substance A is twice the half life of substance B. Initially the number of nuclei of A and B are $N_{_{\! A}}$ and $N_{_{\! B}}$ respectively. After three half life of A, activities of both the samples are

equal. The ratio $\frac{N_A}{N_B}$ is :-

- (1) $\frac{1}{4}$ (2) $\frac{1}{8}$ (3) $\frac{1}{3}$ (4) $\frac{1}{6}$
- Decay rate for a certain mass of a radioactive 13. substance measured at different times varies with time as shown in fig. The number of active nuclei at t = 8 hr will be :-
 - (1) 12.5
 - (2)25
 - (3) 9×10^4
 - (4) 1.3×10^5
- Decay/sec 100 50
- 14. In a radioactive element the fraction of initial amount remaining after its mean life time is
 - (1) $1 \frac{1}{2}$ (2) $\frac{1}{2}$ (3) $\frac{1}{2}$ (4) $1 \frac{1}{2}$
- 15. Activity of a radioactive substance is R_1 at time t_1 and R_2 at time $t_2(t_2 > t_1)$. Then the ratio $\frac{R_2}{R_1}$ is:
 - (1) $\frac{t_2}{t_1}$

- (2) $e^{-\lambda(t_1+t_2)}$
- (3) $e^{\left(\frac{t_1-t_2}{\lambda}\right)}$
- (4) $e^{\lambda(t_1-t_2)}$
- The activity of a sample reduces from \boldsymbol{A}_0 to $A_0/\sqrt{3}$ in one hour. The activity after 3 hours more will be :-
 - (1) $\frac{A_0}{3\sqrt{3}}$ (2) $\frac{A_0}{9}$ (3) $\frac{A_0}{9\sqrt{3}}$ (4) $\frac{A_0}{27}$

- 17. A radioactive element emits 200 particles per second. After three hours 25 particles per second are emitted. The half life period of element will be
 - (1) 50 minutes
- (2) 60 minutes
- (3) 70 minutes
- (4) 80 minutes
- The half life of the isotope 11Na²⁴ is 15 hrs. How 18. much time does it take for $\frac{7}{8}$ th fo a sample of this

isotope to decay:-

- (1) 75 hrs
- (2) 65 hrs
- (3) 55 hrs
- (4) 45 hrs
- 19. 16 gm sample of a radioactive element is taken from Bombay to Delhi in 2 hour and it was found that 1 gm of the element remained (undisintegrated). Half life of the element is
- (1) 2 hour (2) 1 hour (3) $\frac{1}{2}$ hour (4) $\frac{1}{4}$ hour
- 20. The activity of a sample of a radioactive material is A, at time t_1 and A_2 at time t_2 ($t_2 > t_1$). if its mean life T. then
 - $(1) A_1 t_1 = A_2 t_2$
- (2) $A_1 A_2 = t_2 t_1$
- (3) $A_2 = A_1 e^{(t_1 t_2)/T}$ (4) $A_2 = A_1 e^{(t_1/t_2)/T}$
- 21. A nucleus with mass number 220 initially at rest emits an α - particle. If the Q value of the reaction is 5.5 MeV, calculate the kinetic energy of the α - particle.
 - (1) 4.4 MeV
- (2) 5.4 MeV
- (3) 5.6 MeV
- (4) 6.5 MeV
- 22. A and B are two radioactive substances whose half lives are 1 and 2 years respectively. Initially 10 gm of A and 1 gm of B is taken. The time (approximate) after which they will have same quantity remaining is
 - (1) 6.62 years
- (2) 5 years
- (3) 3.2 years
- (4) 7 years

- 23. The half life of a radioactive isotope 'X' is 50 years. It decays to another element 'Y' which is stable. The two elements 'X' and 'Y' were found to be in the ratio of 1:15 in a sample of a given rock. The age of the rock was estimated to be :-
 - (1) 150 years
- (2) 200 years
- (3) 250 years
- (4) 100 years
- 24. In an α -decay kinetic energy of α particle is 98 MeV and Q-value of the reaction is 100 MeV. The mass number of the mother nucleus is. (Assume that daughter nucleus is in ground state):-
 - $(1)\ 100$

(2)200

(3)300

- (4) None of these
- **25**. The ratio of molecular mass of two radioactive substances is $\frac{3}{2}$ and the ratio of their decay constants
 - is $\frac{4}{3}$. Then the ratio of their initial activity per mole will be :-
 - (1)2
- (2)8/9
- (3) 4/3
- (4)9/8
- 26. A radioactive element A with a half-value period of 2 hours decays giving a stable element Y. After a time the ratio of X to Y atoms is 1:7. Then, t is:
 - (1) 6 hour
- (2) 4 hour
- (3) between 4 and 6 hour (4) 14 hour
- **27**. Two radioactive materials X_1 and X_2 contain same number of nuclei. If $6\lambda s^{-1}$ and $4\lambda s^{-1}$ are the decay constants of X_1 and X_2 respectively, the ratio of number of nuclei, undecayed of X_1 to that of X_2 will be (1/e) after a time :-
 - (1) $\frac{1}{2\lambda}$ sec (2) $\frac{1}{10\lambda}$ sec (3) $\frac{1}{5\lambda}$ sec (4) $\frac{1}{\lambda}$ sec

- 28. A gamma ray photon creates an electron-positron pair. If the rest mass of electron is 0.5 MeV and the total KE of electron-positron pair is 0.78 MeV, the energy of gamma ray photon must be:
 - (1) 0.78 MeV
- (2) 1.78 MeV
- (3) 1.28 MeV
- (4) 0.28 MeV
- 29. A radioactive sample consists of two distinct species having equal number of atoms No initially. The mean-life of one species is τ and of the other is 5τ . The decay products in both cases is stable. The total number of radioactive nuclei at $t = 5\tau$ is:-
 - (1) $N_0 \left(\frac{e^5 + 1}{e^5} \right)$
- (2) $N_0 \left(\frac{e^4 + 1}{e^5} \right)$
- (3) $N_0 \left(\frac{e + e^5}{e^5} \right)$
- (4) $N_0 e^{-3}$
- 30. Samples of two radioactive nuclides, X and Y, each have equal activity A_0 at time t = 0. X has half-life of 24 years and Y a half-life of 16 years. The samples are mixed together. What will be the total activity of the mixture at t = 48 years?
 - (1) $\frac{1}{2}A_0$
- (3) $\frac{3}{16}$ A₀

ANSWE						R KEY Exe				Exercise-I
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	4	1	4	3	1	1	2	4	2	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	3	1	4	3	4	1	2	4	3	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	2	1	2	2	3	1	1	2	2	4