- 1. The distance of an object from a spherical mirror is equal to the focal length of the mirror. Then the image:
 - (1) must be at infinity
 - (2) may be at infinity
 - (3) may be at the focus
 - (4) none
- 2. An object is placed in front of a spherical mirror whose 2 times magnified image is formed on screen. Then choose **CORRECT** option:
 - (1) Mirror is concave m = +2
 - (2) Mirror is concave m = -2
 - (3) Mirror is convex m = +2
 - (4) Mirror is convex m = -2
- 3. When a ray of light of frequency 6×10^{14} Hz travels from water of refractive index 4/3 to the glass of refractive index 8/5, its:-
 - (1) frequency decreases to 5/6 of its initial value
 - (2) speed decreases to 5/6 of its initial value
 - (3) wavelength decreases to 6/5 of its initial value
 - (4) speed increases to 6/5 of its initial value
- 4. A ray of light is incident at the glass—water interface at an angle i, it emerges finally parallel to the surface of water, then the value of μ would be :-

- $(1)(4/3)\sin i$
- $(2) 1/\sin i$

(3) 4/3

- (4) 1
- 5. A ray of light is incident at 60° on a prism of refracting angle 30°. The emerging ray is at an angle 30° with the incident ray. The value of refractive index of the prism is :-

- (1) $\frac{\sqrt{3}}{4}$ (2) $\frac{\sqrt{3}}{2}$ (3) $\sqrt{3}$ (4) $\frac{2}{\sqrt{3}}$
- 6. The refracting angle of the prism is 60° and minimum deviation of 30°, then the angle of incidence is:-
 - $(1) 30^{\circ}$

 $(2) 45^{\circ}$

 $(3) 25^{\circ}$

 $(4) 60^{\circ}$

7. Figure shows graph of deviation δ versus angle of incidence for a light ray striking a prism. Angle of prism is :-

 $(1) 30^{\circ}$

 $(2) 45^{\circ}$

 $(3)60^{\circ}$

- $(4)75^{\circ}$
- 8. There is a prism with refractive index equal to $\sqrt{2}$ and the refracting angle equal to 30°. One of the refracting surface of the prism is polished. A beam of monochromatic light will retrace its path if its angle of incidence over the first refracting surface of the prism is :-
 - $(1) 0^{\circ}$

 $(2) 30^{\circ}$

 $(3) 45^{\circ}$

- $(4) 60^{\circ}$
- 9. The refractive index for the material of a 60° prism is 1.50. Then the angle of incidence for minimum deviation is nearly.

$$(\sin 42^\circ \approx \frac{2}{3} \text{ and } \sin 49^\circ \approx \frac{3}{4})$$

 $(1) 30^{\circ}$

 $(2)49^{\circ}$

 $(3) 38^{\circ}$

- (4) 28°
- 10. A ray of light is incident on an equilateral glass prism placed on a horizontal table. For minimum deviation which of the following is true?

- (1) PQ is horizontal
- (2) QR is horizontal
- (3) RS is horizontal
- (4) Either PQ or RS is horizontal

Ray Optics

11. One end of a glass rod of refractive index n = 1.5 is a spherical

surface of radius of curvature R. The centre of the spherical surface lies inside the glass. A point object placed in air on the axis of the rod at the point P has its real image inside glass at the point Q (see fig.). A line joining the points P and Q cuts the surface at Q such that Q = Q The distance Q is:

(1) 8 R

(2) 7 R

(3) 2 R

- (4) None of these
- **12.** A point object is placed at the centre of a glass sphere of radius 6 cm and refractive index 1.5. The distance of the virtual image from the surface of the sphere is:
 - (1) 2 cm
- (2) 4 cm
- (3) 6 cm
- (4) 12 cm
- 13. A concave lens of glass, refractive index 1.5, has both surfaces of same radius of curvature R. On immersion in a medium of refractive index 1.75, it will behave as a :-
 - (1) convergent lens of focal length 3.5R
 - (2) convergent lens of focal length $3.0\ R.$
 - (3) divergent lens of focal length 3.5 R
 - (4) divergent lens of focal length 3.0 R
- 14. An equiconvex lens of refractive index μ and radius of curvature R has its one surface silvered. A point source O is placed before the silvered lens so that its image is coincident with it, the distance of the object from the lens is:-

- (1) $\frac{R}{(\mu-1)}$
- $(2) \frac{2R}{(\mu-1)}$
- (3) $\frac{R}{(2\mu-1)}$
- (4) $\frac{2R}{(2\mu-1)}$

- **15.** A ray gets succesively reflected from two mirrors inclined at an angle of 40° . If the angle of incidence on the first mirror is 30° then the net deviation of this ray is
 - $(1) 40^{\circ}$

 $(2) 280^{\circ}$

 $(3) 80^{\circ}$

- $(4) 240^{\circ}$
- **16.** A small object's 10 cm in front of a plane mirror. A man stands 30 cm from the mirror, behind the object and looks at the object's image. He should focus his eyes to see the image at a distance
 - (1) 25 cm
- (2) 35 cm
- (3) 45 cm
- (4) 40 cm
- **17.** An object 5 cm tall is placed 1 m from a concave spherical mirror which has a radius of curvature of 20 cm. The size of the image is:-
 - (1) 0.11 cm
- (2) 0.50 cm
- (3) 0.55 cm
- (4) 0.60 cm
- **18.** The focal length of a concave mirror is 12 cm. Where should an object of length 4 cm be placed, so that a real image of 1 cm length is formed?
 - (1) 48 cm
- (2) 3 cm
- (3) 60 cm
- (4) 15 cm
- 19. The wavelength of light in two liquids 'x' and 'y' is 3500 Å and 7000 Å. Then the critical angle of x relative to y will be
 - $(1)60^{\circ}$

 $(2) 45^{\circ}$

 $(3) 30^{\circ}$

- $(4)\ 15^{\circ}$
- **20.** A bird in air looks a fish vertically below it and inside water; h_1 is the height of the bird above the surface of water and h_2 the depth of the fish below the surface of water. If refractive index of water with respect to air be μ , then the distance of the fish as observed by the bird is
 - (1) $h_1 + h_2$
- (2) $h_1 + \frac{h_2}{u}$
- (3) $\mu h_1 + h_2$
- (4) $\mu h_1 + \mu h_2$
- 21. An air bubble in a glass slab ($\mu=1.5$) is 6 cm deep as viewed from one face and 4 cm deep as viewed from the other face. The thickness of the glass slab is
 - (1) 6.67 cm
- (2) 10 cm
- (3) 15 cm
- (4) Data is incomplete

- **22.** The minimum distance between an object and its real image formed by a convex lens is
 - (2) 2f

(2) 4f

(3) f

- (4) zero
- **23.** A point object is placed at a distance of 20 cm form a thin plano-convex lens of focal length 15 cm. If the plane surface is silvered, the image will from at

- (1) 60 cm from left of AB
- (2) 30 cm from left of AB
- (3) 12 cm from left of AB
- (4) 60 cm from right of AB
- **24.** A convex lens is made up of three different materials as shown in the figure. For a point object placed on its axis, the number of images formed are

- (1) 1
- (2) 3
- (3) 4
- (4)5
- **25.** If tube length of astronomical telescope is 105 cm and magnifying power is 20 for normal setting. Calculate the focal length of objective:—
 - (1) 100 cm
- (2) 10 cm
- (3) 20 cm
- (4) 25 cm
- **26.** A point object is moving on the principal axis of a concave mirror of focal length 24 cm, towards the mirror. When it is at a distance of 60 cm from the mirror, its velocity is 9 cm/sec. What is the velocity of the image at that instant
 - (1) 5 cm/sec towards the mirror
 - (2) 4 cm/sec towards the mirror
 - (3) $4 \, \text{cm/sec}$ away from mirror
 - (4) 9 cm/sec away from mirror

- 27. A ray of light making an angle 10° with the horizontal is incident on a plane mirror an angle θ with the horizontal. What should be the value of θ so that the reflected ray goes vertically upwards?
 - $(1) 20^{\circ}$

 $(2) 30^{\circ}$

(3) 40°

- $(4) 45^{\circ}$
- **28.** What should be the maximum acceptance angle at the air-core interface of an optical fibre if n_1 and n_2 are the refractive indices of the core and the cladding, respectively
 - (1) $\sin^{-1}(n_2/n_1)$
- (2) $\sin^{-1} \sqrt{n_1^2 n_2^2}$
- $(3) \left[\tan^{-1} \frac{n_2}{n_1} \right]$
- $(4) \left[\tan^{-1} \frac{n_1}{n_2} \right]$
- 29. A telescope consisting of an objective of focal length 60 cm and an eyepiece of focal length 5 cm is focussed to a distant object in such a way that parallel rays emerge from the eye piece. If the object subtends an angle of 2° at the objective, then find the angular width of the image.
 - (1) 24°

- $(2) 26^{\circ}$
- (3) 21°

- (4) 20°
- **30.** A prism having an apex angle of 4° and refractive index of 1.50 is located in front of a vertical plane mirror as shown. A horizontal ray of light is incident on the prism. The total angle through which the ray is deviated is :-

- (1) 4° clockwise
- (2) 178° clockwise
- (3) 2° clockwise
- (4) 8° clockwise

				ANSWER KEY			Exercise-I			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	2	2	2	3	2	2	3	2	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	1	3	1	3	2	4	3	3	3	2
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	3	2	3	2	1	3	3	2	1	2