- 1. The first law of thermodynamics is based on :-
 - (1) Law of conservation of energy
 - (2) Law of conservation of mechanical energy
 - (3) Law of conservation of gravitational P.E.
 - (4) None of the above
- 2. In a process, 500 calories of heat is given to a system and at the same time 100 joules of work is done on the system. The increase in the internal energy of the system is :-
 - (1) 40 calories
- (2) 1993 joules
- (3) 2193 joules
- (4) 82 calories
- 3. In a thermodynamic process pressure of a fixed mass of a gas is changed in such a manner that the gas releases 20 joules of heat and 8 joules of work was done on the gas. If the initial internal energy of the gas was 30 joules, then the final internal energy will be:-
 - (1) 2 J
- (2) 42 J
- (3) 18 J
- (4)58J
- When a system is taken from state 'a' to state 4. 'b' along the path 'acb', it is found that a quantity of heat Q = 200 J is absorbed by the system and a work W = 80J is done by it. Along the path 'adb', Q = 144J. The work done along the path 'adb' is

(1) 6J

(2) 12 J

(3) 18 J

- (4) 24 J
- 5. 1 kg of a gas does 20 kJ of work and receives 16 kJ of heat when it is expanded between two states. A second kind of expansion can be found between the same initial and final state which requires a heat input of 9 kJ. The work done by the gas in the second expansion is:
 - (1) 32 kJ
- (2) 5 kJ
- (3) 4 kJ
- (4) 13 kJ

6. In a cyclic process shown on the P - V diagram, the magnitude of the work done is:

- (1) $\pi \left(\frac{P_2 P_1}{2}\right)^2$
- (2) $\pi \left(\frac{V_2 V_1}{2} \right)^2$
- (3) $\frac{\pi}{4}(P_2 P_1)(V_2 V_1)$ (4) $\pi(P_2V_2 P_1V_1)$
- 7. A system is taken along the paths A and B as shown. If the amounts of heat given in these processes are ΔQ_A and ΔQ_B and change in internal energy are ΔU_A and ΔU_B respectively then :-

- (1) $\Delta Q_{\Delta} = \Delta Q_{R}$; $\Delta U_{\Delta} < \Delta U_{R}$
- (2) $\Delta Q_{\Delta} \geq \Delta Q_{B}$; $\Delta U_{\Delta} = \Delta U_{B}$
- (3) $\Delta Q_{\Lambda} < \Delta Q_{D}$; $\Delta U_{\Lambda} > \Delta U_{D}$
- (4) $\Delta Q_{\Delta} > \Delta Q_{B}$; $\Delta U_{\Delta} = \Delta U_{B}$
- 8. Which of the following graphs correctly represents the variation of $\beta = -(dV/dP)/V$ with P for an ideal gas at constant temperature?

THERMODYNAMICS

9. P-V plots for two gases during adiabatic processes are shown in the figure. Plots 1 and 2 should correspond respectively to

- (1) He and O_2
- (2) O_2 and He
- (3) He and Ar
- (4) O₂ and N₂
- 10. For an adiabatic expansion of a perfect gas, the value of $\Delta P/P$ is equal to:-
 - $(1) \sqrt{\gamma} \Delta V/V$
- $(2) \Delta V/V$
- (3) −y ∆V/V
- $(4) \gamma^2 \Delta V/V$
- A gas for which $\gamma = 5/3$ is heated at constant 11. pressure. The percentage of total heat given that will be used for external work is:
 - (1) 40%
- $(2)\ 30\%$
- (3) 60%
- (4) 20%
- **12**. One mole of an ideal gas at temperature T₁ expends according to the law $\frac{P}{V^2}$ = a (constant). The work done by the gas till temperature of gas becomes T₂

 - (1) $\frac{1}{2}$ R(T₂ T₁) (2) $\frac{1}{3}$ R(T₂ T₁)

 - (3) $\frac{1}{4}$ R(T₂-T₁) (4) $\frac{1}{5}$ R(T₂-T₁)
- 13. A quantity of air ($\gamma = 1.4$) at 27°C is compressed suddenly, the temperature of the air system will:
 - (1) Fall

- (2) Rise
- (3) Remain unchanged
- (4) First rise and then fall
- The volume of a poly-atomic gas $\left(\gamma = \frac{4}{3}\right)$ 14.

compressed adiabatically to $\frac{1}{8^{th}}$ of the original volume. If the original pressure of the gas is P₀ the new pressure will be:

- (1) $8 P_0$ (2) $16 P_0$ (3) $6 P_0$ (4) $2 P_0$

15. Graph of isometric process is :-

- 16. According to the second law of thermodynamics:
 - (1) heat energy cannot be completely converted to work
 - (2) work cannot be completely converted to heat
 - (3) for all cyclic processes we have dQ/T < 0
 - (4) the reason all heat engine efficiencies are less than 100% is friction, which is unavoidable
- 17. A reversible refrigerator operates between a low temperature reservoir at T_C and a high temperature reservoir at T_H. Its coefficient of performance is given by:
 - $(1) (T_H T_C) / T_C$
- $(2) T_C / (T_H T_C)$
- (3) $(T_H T_C)/T_H$ (4) $T_H/(T_H T_C)$
- The efficiency of carnot engine is 50% and 18. temperature of sink is 500K. If temperature of source is kept constant and its efficiency raised to 60%, then the required temperature of the sink will be :-
 - (1) 100 K
- (2) 600 K
- (3) 400 K
- (4) 500 K
- 19. A refrigerator works between temperature −10°C and 27° C, the coefficient of performance is :
 - (1) 7.1
- (2) 1
- (3) 8.1
- (4) 15.47
- 20. An ideal gas expands isothermally from a volume \boldsymbol{V}_1 to \boldsymbol{V}_2 and then compressed to original volume V_1 adiabatically. Initial pressure is P_1 and final pressure is P_3 . The total work done is W. Then
 - (1) $P_3 > P_1$, W > 0 (2) $P_3 < P_1$, W < 0
 - (3) $P_3 > P_1$, W < 0 (4) $P_3 = P_1$, W = 0

21. An ideal gas is taken through the cycle $A \rightarrow B \rightarrow C \rightarrow A$, as shown in the figure. If the net heat supplied to the gas in the cycle is 5J, the work done by the gas in the process $C \rightarrow A$ is

(1) - 5J

- (2) 10 J
- (3) 15 J
- (4) 20 J
- 22. Three processes form a thermodynamic cycle as shown on P-V diagram for an ideal gas. Process $1 \rightarrow 2$ takes place at constant temperature (300K). Process $2 \rightarrow 3$ takes place at constant volume. During this process 40J of heat leaves the system. Process $3 \rightarrow 1$ is adiabatic and temperature T_3 is 275K. Work done by the gas during the process $3 \rightarrow 1$ is

(1) - 40J

- (2) 20J
- (3) + 40J
- (4) + 20J

23. The above P-V diagram represents the thermodynamic cycle of an engine, operating with an ideal monoatomic gas. The amount of heat, extracted from the source in a single cycle is:

(1) $p_0 v_0$

- $(2) \left(\frac{13}{2}\right) p_0 v$
- $(3) \left(\frac{11}{2}\right) p_0 v_0$
- $(4) 4p_0v$
- **24.** In the above question efficiency of cycle ABCDA is nearly:
 - (1) 12.5%
- (2) 15.4%
- (3) 9.1%
- (4) 10.5%

ANSWER KE							Exercise-I			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	1	3	3	4	4	3	4	1	2	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	1	2	2	2	3	1	2	3	1	3
Que.	21	22	23	24						
Ans.	1	1	2	2						