- 1. A particle of mass m is executing S.H.M. If amplitude is a and frequency n, the value of its force constant will be :
 - $(1) \, \text{mn}^2$
- $(2) 4mn^2a^2$ $(3) ma^2$
- (4) $4\pi^2 \text{mn}^2$
- 2. The equation of motion of a particle executing S.H.M. where letters have usual meaning is:
 - (1) $\frac{d^2x}{dt^2} = -\frac{k}{m}x$ (2) $\frac{d^2x}{dt^2} = +\omega^2x$

 - (3) $\frac{d^2x}{dt^2} = -\omega^2 x^2$ (4) $\frac{d^2x}{dt^2} = -kmx$
- 3. The equation of motion of a particle executing simple harmonic motion is $a+16\pi^2x=0$. In this equation, a is the linear acceleration in m/s² of the particle at a displacement x in metre. Find the time period.
 - (1) 0.50
- (2) 0.15
- (3) 0.155
- (4) 0.25
- 4. Out of the following functions representing motion of a particle which represents SHM:
 - (A) $y = \sin \omega t \cos \omega t$ (B) $y = \sin^3 \omega t$
 - (C) $y = 3\cos\left(\frac{3\pi}{4} 5\omega t\right)$ (D) $y = 1 + \omega t + \omega^2 t^2$
 - (1) Only (A)
 - (2) Only (D) does not represent SHM
 - (3) Only (A) and (C)
 - (4) Only (A) and (B)
- 5. The phase of a particle in SHM at time t is $\pi/6$. The following inference is drawn from this:
 - (1) The particle is at x = a/2 and moving in + X-direction
 - (2) The particle is at x = a/2 and moving in - X-direction
 - (3) The particle is at x = -a/2 and moving in + X-direction
 - (4) The particle is at x = -a/2 and moving in - X-direction

- 6. A particle executes SHM of type $x = asin \omega t$. It takes time t_1 from x = 0 to $x = \frac{a}{2}$ and t_2 from $x = \frac{a}{2}$ to x = a. The ratio of $t_1 : t_2$ will be :
 - (1) 1 : 1
- (2) 1 : 2
- $(3)\ 1:3$
- (4) 2 : 1
- 7. The period of a particle is 8s. At t = 0 it is at the mean position. The ratio of distance covered by the particle in first second and second will be-
 - (1) $\frac{\sqrt{2}-1}{\sqrt{2}}$
- (2) $\frac{1}{\sqrt{2}}$
- (3) $\frac{1}{\sqrt{2}-1}$
- $(4) \left[\sqrt{2} 1 \right]$
- A particle is executing SHM with time period T. Starting from mean position, time taken by it to complete $\frac{5}{8}$ oscillations, is :-

- (1) $\frac{T}{12}$ (2) $\frac{T}{6}$ (3) $\frac{5T}{12}$ (4) $\frac{7T}{12}$
- 9. Two bodies performing S.H.M. have same amplitude and frequency. Their phases at a certain instant are as shown in the figure. The phase difference between them is

- (1) $\frac{11}{6}\pi$ (2) π (3) $\frac{\pi}{3}$ (4) $\frac{3}{5}\pi$

- 10. The velocity-time diagram of a harmonic oscillator is shown in the adjoining figure. The frequency of oscillation is:

- (1) 25 Hz
- (2) 50 Hz
- (3) 12.25 Hz
- (4) 33.3 Hz

11. The plot of velocity (v) versus displacement (x) of a particle executing simple harmonic motion is shown in figure. The time period of oscillation of particle is :-

- (1) $\frac{\pi}{2}$ s
- $(2) \pi s$
- (3) $2\pi s$
- (4) $3\pi s$
- 12. A particle is executing S.H.M. of frequency 300 Hz and with amplitude 0.1 cm. Its maximum velocity will be:
 - (1) $60\pi \text{ cm/s}$
- (2) $0.6\pi \text{ cm/s}$
- (3) 0.50π cm/s
- (4) 0.05π cm/s
- **13**. Average velocity of a particle performing SHM in one time period is :-
 - (1) Zero

 $(2) \frac{A\omega}{2}$

(3) $\frac{A\omega}{2\pi}$

- $(4) \frac{2A\omega}{}$
- 14. A particle performing S.H.M. is found at its equilibrium at t = 1 s and it is found to have a speed of 0.25 m/s at t = 2 s. If the period of oscillation is 6s. Calculate amplitude of oscillation
 - (1) $\frac{3}{2\pi}$ m
- (2) $\frac{3}{4\pi}$ m
- (3) $\frac{6}{7}$ m
- 15. Two simple harmonic motions are represented by the equations $y_1 = 0.1 \sin\left(100\pi t + \frac{\pi}{3}\right)$ and

 $y_2 = 0.1 \cos 100\pi t$. The phase difference of the velocity of particle 1, with respect to the velocity of particle 2 is-

- (1) $\frac{-\pi}{6}$ (2) $\frac{\pi}{3}$ (3) $\frac{-\pi}{3}$ (4) $\frac{\pi}{6}$

- 16. Two identical pendulums oscillate with a constant phase difference $\frac{\pi}{4}$ and same amplitude. If the maximum velocity of one is v, the maximum velocity of the other will be
 - (1) v
- (2) $\sqrt{2}v$ (3) 2v
- $(4) \frac{v}{\sqrt{2}}$
- 17. The acceleration of a particle in SHM at 5 cm from its mean position is 20 cm/sec². The value of angular velocity in radian/second will be:
 - (1)2
- (2)4
- $(3)\ 10$
- (4) 14
- If the displacement, velocity and acceleration of a 18. particle in SHM are 1 cm, 1cm/sec, 1cm/sec² respectively its time period will be (in seconds):
 - $(1) \pi$
- $(2) 0.5\pi$
- $(3) 2\pi$
- $(4)\ 1.5\pi$
- 19. The variation of acceleration (a) and displacement (x) of the particle executing SHM is indicated by the following curve:

- 20. A body oscillates with SHM according to the equation $x = 5.0 \cos(2\pi t + \pi)$. At time t = 1.5 s. its displacement, speed and acceleration respectively is:
 - (1) $0, -10\pi, +20\pi^2$ (2) $5, 0, -20\pi^2$
 - $(3) 2.5, +20\pi, 0$
- $(4) -5.0, +5\pi, -10\pi^2$
- 21. Two simple Harmonic Motions of angular frequency 500 and 5000 rads⁻¹ have the same displacement amplitude. The ratio of their maximum accelerations
 - (1) $1:10^3$ (2) $1:10^4$ (3) 1:10 (4) $1:10^2$

- 22. A particle is executing a simple harmonic motion. Its maximum acceleration is α and maximum velocity is β . Then its time period of vibration will be :-
 - (1) $\frac{2\pi\beta}{\alpha}$ (2) $\frac{\beta^2}{\alpha^2}$ (3) $\frac{\alpha}{\beta}$ (4) $\frac{\beta^2}{\alpha}$

- 23. A particle executes linear simple harmonic motion with an amplitude of 5 cm. When the particle is at 3 cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in seconds is :-

- (1) $\frac{2}{3\pi}$ (2) $\frac{3\pi}{2}$ (3) $\frac{2\pi}{3}$ (4) $\frac{3}{2\pi}$
- 24. A body executes S.H.M. with an amplitude A. At what displacement from the mean position, is the potential energy of the body one-fourth of its total energy?
 - $(1) \frac{A}{4}$
 - (2) $\frac{A}{2}$
 - (3) $\frac{3A}{4}$
 - (4) Some other fraction of A
- **25**. A particle of mass 4 kg moves simple harmonically such that its PE (U) varies with position x, as shown. The period of oscillations is:

- (1) $\frac{2\pi}{25}$ s
- (2) $\frac{\pi\sqrt{2}}{5}$ s
- (3) $\frac{4\pi}{5}$ s
- (4) $\frac{2\pi\sqrt{2}}{5}$ s
- 26. The force acting on a 4gm mass in the energy region $U = 8x^2 \text{ at } x = -2cm \text{ is : }$
 - (1) 8 dyne
- (2) 4 dyne
- (3) 16 dyne
- (4) 32 dyne
- A particle describes SHM in a straight line about O. **27**.

If the time period of the motion is T then its kinetic energy at P be half of its peak value at O, if the time taken by the particle to travel from O to P is

- (1) $\frac{1}{2}$ T (2) $\frac{1}{4}$ T (3) $\frac{1}{2\sqrt{2}}$ T (4) $\frac{1}{8}$ T

- 28. The total energy of a harmonic oscillator of mass 2kg is 9 joules. If its potential energy at mean position is 5 joules, its K.E. at the mean position will be:
 - (1)9J
- (2) 14J
- (3) 4J
- (4) 11J
- 29. The particle executing simple harmonic motion has a kinetic energy $K_0 \cos^2 \omega t$. The maximum values of the potential energy and the total energy are respectively:-
 - (1) K_o and K_o
- (2) 0 and 2K_o
- (3) $\frac{K_o}{2}$ and K_o
- (4) $\rm K_o$ and $\rm 2K_o$
- 30. If <E> and <V> denotes the average kinetic and average potential energies respectively of mass describing a simple harmonic motion over one period then the correct relation is:

- (1) $\langle E \rangle = \langle V \rangle$ (2) $\langle E \rangle = 2 \langle V \rangle$ (3) $\langle E \rangle = -2 \langle V \rangle$ (4) $\langle E \rangle = -\langle V \rangle$
- 31. The potential energy of a simple harmonic oscillator at mean position is 3 joules. If its mean K.E. is 4 joules, its total energy will be:
 - (1) 7J
- (2) 8J
- (3) 10J
- (4) 11J
- 32. Simple pendulum of large length is made equal to the radius of the earth. Its period of oscillation will be:
 - (1) 84.6 min.
- (2) 59.8 min.
- (3) 42.3 min.
- (4) 21.15 min.
- 33. A lift is ascending with acceleration g/3. What will be the time period of a simple pendulum suspended from its ceiling if its time period in stationary lift is
- (1) $\frac{T}{2}$ (2) $\frac{\sqrt{3}T}{2}$ (3) $\frac{\sqrt{3}T}{4}$ (4) $\frac{T}{4}$
- 34. A simple pendulum performs simple harmonic motion about x = 0 with an amplitude a and time period T. The speed of the pendulum at x = a/2 will be :-
 - (1) $\frac{\pi a \sqrt{3}}{T}$ (2) $\frac{\pi a \sqrt{3}}{2T}$ (3) $\frac{\pi a}{T}$ (4) $\frac{3\pi^2 a}{T}$

- **35**. The period of oscillation of simple pendulum of length L suspended from the roof of the vehicle which moves without friction, down on an inclined plane of inclination α , is given by :-
 - (1) $2\pi\sqrt{\frac{L}{g\cos\alpha}}$
- (2) $2\pi \sqrt{\frac{L}{q \sin \alpha}}$
- (3) $2\pi\sqrt{\frac{L}{\sigma}}$
- (4) $2\pi\sqrt{\frac{L}{g \tan \alpha}}$

- The time period of oscillations of a simple pendulum 36. is 1 minute. If its length is increased by 44%, then its new time period of oscillation will be :-
 - (1) 96 s
- (2) 58 s
- (3) 82 s
- (4) 72 s
- **37**. Two pendulums of length 1.21 m and 1.0 m start vibrating. At some instant, the two are in the mean position in same phase. After how many vibrations of the longer pendulum, the two will be in phase?
 - $(1)\ 10$
- (2) 11
- (3) 20
- (4) 21
- A pendulum is hung from the roof of a sufficiently 38. high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is 16 m/s² at a distance of 4 m from the mean position. The time period of oscillation is :-
 - (1) $2\pi s$
- $(2) \pi s$
- (3) 2 s
- (4) 1 s
- 39. Some springs are combined in series and parallel arrangement as shown in the figure and a mass M is suspended from them. The ratio of their frequencies will be:

- (1) 1 : 1
- (2) 2 : 1
- (3) $\sqrt{3} : 2$ (4) 4 : 1
- Two particles A and B of equal masses are **40**. suspended from two massless springs of spring constants k₁ and k₂, respectively. If the maximum velocities during oscillations are equal, the ratio of amplitudes of A and B is-
 - (1) $\sqrt{k_1/k_2}$
- (2) k_1/k_2
- (3) $\sqrt{k_2/k_1}$
- $(4) k_0/k_1$
- 41. A block of mass m is suspended separately by two different springs have time period t_1 and t_2 . If same mass is connected to parallel combination of both springs, then its time period is given by :-
 - $(1) \ \frac{t_1 t_2}{t_1 + t_2}$
- (2) $\frac{t_1t_2}{\sqrt{t_1^2+t_2^2}}$
- (3) $\sqrt{\frac{t_1t_2}{t_1+t_2}}$
- $(4) t_1 + t_2$

42. As shown in the figure, two light springs of force constant K_1 and K_2 oscillate a block of mass M. Its effective force constant will be:

 $(1) K_{1}K_{2}$

- $(2) K_1 + K_2$
- (3) $\frac{1}{K_1} + \frac{1}{K_2}$
- (4) $\frac{K_1K_2}{K_1 + K_2}$
- 43. Two springs of force constant k and 2k are connected to a mass as shown below. The frequency of oscillation of the mass is:

- (1) $\frac{1}{2\pi}\sqrt{\frac{k}{m}}$
- $(2) \ \frac{1}{2\pi} \sqrt{\frac{2k}{m}}$
- (3) $\frac{1}{2\pi} \sqrt{\frac{3k}{m}}$
- (4) $\frac{1}{2\pi} \sqrt{\frac{m}{k}}$
- 44. In an artificial satellite, the use of a pendulum watch is discarded, because:
 - (1) The satellite is in a constant state of motion
 - (2) The effective value of g becomes zero in the artificial satellite
 - (3) The periodic time of the pendulum watch is reduced
 - (4) None of these
- **45**. A body of mass m is attached to the lower end of a spring whose upper end is fixed. The spring has negligible mass. When the mass m is slightly pulled down and released, it oscillates with a time period of 3s. When the mass m is increased by 2 kg, the time period of oscillations becomes 5 s. The value of m in kg is :-

- (1) $\frac{8}{9}$ (2) $\frac{9}{8}$ (3) $\frac{9}{16}$ (4) $\frac{16}{9}$

- 46. The amplitude of a SHM reduces to 1/3 in first 20 second then in first 40 second its amplitude becomes:

- (1) $\frac{1}{3}$ (2) $\frac{1}{9}$ (3) $\frac{1}{27}$ (4) $\frac{1}{\sqrt{3}}$
- 47. Amplitude of vibrations remains constant in case of
 - (i) free vibrations
 - (ii) damped vibrations
 - (iii) maintained vibrations
 - (iv) forced vibrations
 - (1) i, iii, iv
- (2) ii, iii
- (3) i, ii, iii
- (4) ii, iv
- 48. In the following four:
 - Time period of revolution of a satellite just above the earth's surface (T_{st})
 - (ii) Time period of oscillation of ball inside the tunnel bored along the diameter of the earth
 - (iii) Time period of simple pendulum having a length equal to the earth's radius in a uniform field of 9.8 newton/kg (T_{sn})
 - (iv) Time period of an infinite simple pendulum in the earth's gravitational field (T_i)

Which of the following is true

- (1) $T_{st} > T_{ma}$ (3) $T_{sp} > T_{is}$
- (2) $T_{ma} > T_{st}$ (4) $T_{st} = T_{ma} = T_{sp} = T_{is}$

- **49**. A block is resting on a piston which executes simple harmonic motion with a period 2.0 s. The maximum velocity of the piston, at an amplitude just sufficient for the block to separate from the piston is :- (g = 10 m/s^2
 - (1) 1.57 ms^{-1}
- $(2) 3.14 \text{ ms}^{-1}$
- (3) 1 ms^{-1}
- (4) 6.42 ms⁻¹
- A simple pendulum has time period T_1 . The point **50**. of suspension is now moved upward according to the relation $y = Kt^2$, $(K = 1 \text{ m/s}^2)$ where y is the vertical displacement. The time period now

becomes T_2 . The ratio of $\frac{T_1^2}{T_2^2}$ is : (g = 10 m/s²)

- (1) $\frac{6}{5}$ (2) $\frac{5}{6}$ (3) 1 (4) $\frac{4}{5}$

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	1	1	3	1	2	3	4	3	1	1	1	1	1	1
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	1	3	1	2	4	1	2	2	4	4	4	3	1	1
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	4	2	2	1	1	4	1	2	3	3	2	4	3	2	2
Que.	46	47	48	49	50										
Ans.	2	1	4	2	1										