ORGANIC CHEMISTRY

SOLUTIONS

CLASSIFICATION & NOMENCLATURE

- 5. $CH_2=CH-C\equiv CH \xrightarrow{+2(CH_2)} C_6H_8$ First member Third member of Alkenyne of Alkenyne C_4H_4
- 18. CH₃—C—O—CH=CH₂
 O
 Vinyl acetate
- 23. $\stackrel{3}{\text{CH}_3}$ $\stackrel{2}{\text{CH}_2}$ $\stackrel{1}{\text{CH}_2}$ $\stackrel{1}{\text{CH}_3}$ Isobutyl chloride IUPAC Name 1-Chloro-2-methyl propane

IUPAC: 3-Ethyl-2, 5-dimethylhexane

27.
$$CH_3-CH_2-CH_2-\frac{2}{C}-\frac{1}{COOH}$$

 $OHC-\frac{2}{3}-\frac{2}{4}H_2-\frac{2}{5}H_3$

IUPAC: 5-Ehyl-3-methylcyclohex-1-ene

43. $(CH_3)_2CHCH(CH_3)_2 \leftrightarrow H_3C-CH-CH-CH_3$ CH_3CH_3

 $IUPAC \rightarrow 2$, 3-Dimethyl butane

ISOMERISM

- **2.** $CH_3-CH_2-CH_2-CH_3$ $CH_3-CH-CH_3$ isobutane
- **19.** Each compound have three double bond and each double bond in second compound show geometrical isomerism and cis representation.
- **21.** Option three have –OH group gauche (stabilised by H-bonding) and –CH₃ group anti (minimum repulsion). So, it is most stable.

22. (A) CH₃-CH₂-CH₂-CH₂-CH₂-OH

n-Pentyl alcohol

- (B) CH₃-CH-CH₂-CH₂-OH isopentyl alcohol CH₃
- CH₃
 (C) CH₃-C-CH₂-OH
 Neopentyl alcohol
 CH₃
- (D) CH_3 – CH_2 –CH- CH_2 –OH active pentyl alcohol CH_3
- 24. CH_3 - $CH = CH CH CH CH_3$ OH OH

 * \Rightarrow Chiral carbon

 S.I. = $2^3 = 8$ $\sqrt{\Rightarrow}$ G.I. center

GENERAL ORGANIC CHEMISTRY

15. Carboxylic acid in water releases proton, so most acidic compound will be the most highly ionized in

$$\begin{array}{c} -I & Cl \\ \uparrow \\ \text{water i.e., } CH_3-CH_2-C-COOH \\ -I & Cl \end{array}$$

- **21.** (1) \bigcirc CI NO_{2} (-I, +M) (-I > +M) (-I > +M) Most stable
- **25.** In vinyl chloride (CH₂=CH-Cl) C-Cl bond is having double bond character due to resonance, while in rest of the compound C-Cl bond is pure single bond.
- 28. (1) \bigcirc No resonance Resonance $\overset{\bigcirc}{C}H_2$ (2) $\overset{\bigcirc}{C}H_2$ (3) $\overset{\bigcirc}{O}CH_3$ $\overset{\bigcirc}{NO_2}$ $\overset{\bigcirc}{-M}$ (Most stable)

Stability of carbonion ∞ -M, -I

ORGANIC CHEMISTRY

Most stable carbocation is tropylium ion i.e., 29.

- CH_3 — $\overset{\oplus}{O}$ $\overset{\oplus}{\wedge}$ CH_2 is stabilised by resonance so it is 31. more stable than CH₂—CH₃
- 49. Basic strength $\infty + M_1 + H_2 + I$

$$\propto \frac{1}{-M,-I,-H}$$

$$NH_2$$
 NH_2 NH_2

55. Stability of Alkene \propto H-effect \propto Number of α H

HYDROCARBON

$$CH_3$$
— CH_2 — CH_2 — CH_3 + CH_3 — CH_2 — CH_2 — CH_3
 CH_3 — CH_3 — CH_3 — CH_3
 CH_3 — $CH_$

2,5-Dimethylhexane

4. Isobutane is unsymmetrical alkane, so it not prepared by wurtz reaction.

15.
$$CH_3$$
— $C=CH_2$
 $\xrightarrow{KMnO_4}$
 CH_3 — $C=O+[HCOOH]$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CO

27.

$$Me - CH_2 - C = CH \xrightarrow{NH_3/NaNH_2} Me - CH_2 - C = \stackrel{\Theta}{C}Na$$

$$(A)$$

$$\downarrow Et - Br$$

$$Me - CH_2 - C = C - Et$$

$$(B)$$

36. Reactivity ∝ stability of intermediate carbocation

$$\begin{array}{c} \text{Ph-CH=CH}_{2} \\ \text{(I)} \quad \downarrow \text{E}^{\oplus} \\ \text{(II)} \quad \downarrow \text{E}^{\oplus} \\ \\ \text{Ph-C=CH-CH}_{3} \\ \text{(II)} \quad \downarrow \text{E}^{\oplus} \\ \\ \text{CH}_{3} \\ \text{Ph-C-CH-CH}_{3} \\ \text{(b)} \quad \stackrel{}{\text{E}} \\ \\ \text{Ph-C=CH-CH}_{3} \\ \text{Ph} \quad \downarrow \text{E}^{\oplus} \\ \text{(III)} \\ \\ \text{Ph-C} \quad \text{CH-NO}_{2} \\ \text{(IV)} \quad \downarrow \text{E}^{\oplus} \\ \\ \text{Ph-C} \quad \text{CH-CH-NO}_{2} \\ \text{Ph-E} \\ \text{(c)} \\ \\ \text{Stability order } \text{c} > \text{b} > \text{a} > \text{d} \\ \\ \end{array}$$

Reactivity order III > II > I > IV

39.
$$CH_3$$
— $CH=CH_2$ \xrightarrow{dil} CH_3 — CH — CH_3 (A)

CH₃—CH=CH₂
$$\xrightarrow{B_2H_6}$$
 $\xrightarrow{H_2O_2}$ CH₃—CH₂—CH₂ (B)

A and B are not chain isomers. A and B are isomers of CH₃—CH₂—O—CH₃

56. Reactivity (ESR) ∝ e⁻ density in the ring

$$O$$
 CH_3 (Maximum hyperconjugation)

63.
$$\delta = \begin{cases} \delta - \begin{cases} \odot \\ \text{Cl} \end{cases} \text{ (Due to +M/+R of -Cl)} \end{cases}$$

HALOGEN DERIVATIVES

- 1. Cl⁻ can not substitute ⁻OH because here ⁻OH is not a good leaving group.
- CH_3 —CH—Z or CH_3 —C—Z group give yellow OH O ppt but Z should not have L.P.

Aromatic carbocation

14.
$$\stackrel{-\delta}{R} \neq \stackrel{+\delta}{Mgx} + \stackrel{R'-NH_2}{Hgx}$$
 (Base) (active hydrogen compound) Acid base Rx

R-H (Alkane)

- **21.** –CCl₃ gp is meta-directing
- **23.** SN^1 reaction
- **32.** Rate of SN¹ ∝ stability of carbocation

ALCOHOL, ETHER AND PHENOL

1.
$$CH_3$$
- CH_2 - OH $\frac{PBr_3}{Nucleophilic}$ CH_3 - CH_2 - Br $\frac{Alc. KOH}{Elimination}$

$$CH_2$$
- CH_2

$$\frac{Br_2}{Electrophilic}$$

$$CH_2$$
- CH_2

$$\frac{Br_2}{Electrophilic}$$

$$CH_2$$
- CH_2

6.
$$CH_3-CH=CH_2+H_2O \xrightarrow{H^{\oplus}} CH_3-CH-CH_3$$

RDS H^{\oplus} $CH_3-CH-CH_3 \xrightarrow{H_2O}$ Nucleophilic attack

This is example of electrophilic addition reaction.

23.
$$CH_2=CH_2 \xrightarrow{HBr} CH_3-CH_2-Br \xrightarrow{C_2H_5Na} CH_3-CH_2-O-C_2H_5$$
 Ethoxyethane

- **31.** Nature of Alcohol Time with Lucas reagent to develope turbidity
 - 1) 1° Alcohol \rightarrow after 30 minute (isobutyl alcohol)
 - 2) 2° Alcohol \rightarrow after 5 minute (2-Butanol)
 - 3) 3° Alcohol → Instant (तुरन्त) t-Butyl alcohol,
 - 4) Diphenyl carbinol → Instant (तुरन्त)

CARBONYL COMPOUNDS, ACID AND IT'S DERIVATIVES

17.
$$R-CH=O+H_2N-R'\longrightarrow R-CH=N-R'$$
Imine

26.

$$OH \longrightarrow CH_3 + \delta \longrightarrow OH \longrightarrow Br$$

$$3^{\circ} Alc. \longrightarrow Mg$$

$$CH_2 - OH \longrightarrow H_2O \longrightarrow Mg$$

$$HBr \longrightarrow HBr \longrightarrow HBr$$

$$-\delta \longrightarrow HBr \longrightarrow HBr$$

$$-H_2O \longrightarrow HBr$$

$$-HBr$$

$$-H$$

44.
$$CH_3-C-O+C-CH_3 + C_2H_5-OH$$
Acetic anhydride \downarrow Ethanol
$$CH_3-C-O-C_2H_5 + CH_3-COOH$$

47. $P_2O_5 \Rightarrow Dehydratioin agent$

48.
$$\bigcirc$$
CHO
 $\xrightarrow{\text{NaOH}}$
CHO
 $\xrightarrow{\text{Cannizaro}}$
 \bigcirc
CH2
 \bigcirc
 $\xrightarrow{\text{CH}_2\text{OH}}$
 $\xrightarrow{\text{H}^*}$
 \longrightarrow
 \longrightarrow
 \longrightarrow
 \longrightarrow
CH2
 \bigcirc
Estrification

NITROGEN CONTAINING COMPOUNDS

4. CH₃CONH₂
$$\xrightarrow{P_2O_5}$$
 CH₃-CN $\xrightarrow{Na/E+OH}$ Dehydration CH₃CH₂NH₂ Mendius reduction

13.
$$C_2H_5$$
— $N=C=O$ alkline hydrolysis $C_2H_5NH_2$
 CH_3
 CH

14.
$$C_2H_5NH_2$$

Ph-CHO

 $C_2H_5N=CH-Ph$

NOCI

 $C_2H_5N=CH-Ph$
 C_2H_5CI
 C_4H_5N+CI
 C_4H_5N+CI
 C_4H_5N+CI
 C_4H_5N+CI
 C_4H_5N+CI
 C_5H_5N+CI
 C_5H_5N+CI
 C_5H_5N+CI
 C_5H_5N+CI
 C_5H_5N+CI

$$\begin{array}{ccc} \textbf{32.} & C_6H_5NH_2 \xrightarrow{N_aNO_2/HCl} & C_6H_5 \stackrel{\oplus}{N_2} \stackrel{\ominus}{Cl} \\ & & & & & & & & & & \\ [C_6H_5-N\equiv \stackrel{\oplus}{N}]\stackrel{\ominus}{Cl} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

BIOMOLECULES, POLYMERS AND CHEMISTRY IN EVERYDAY LIFE (Refer to NCERT Book)

QUALITATIVE AND QUANTITATIVE ANALYSIS OF ORGANIC COMPOUND

1.
$$PV = \frac{WN_2}{28}RT$$
 $P = 720 - 20 = \frac{700}{760}Atm$
 $V = 60 \text{ ml} = 0.060 \text{ L}$
 $T = 300 \text{ K}$

$$W_{N_2} = \frac{700}{760} \times \frac{0.060 \times 28}{0.0821 \times 300} \quad W_{compound} = 0.4 \text{ gm}$$

$$W_{N_2} = 0.062 \text{ gm}$$

$$\%N = \frac{0.062}{0.4} \times 100 = 15.72\%$$

12. Total number of = Total number of eq of acid eq of base in acid base titration

So
$$Meq_{NH_3} + Meq_{NaOH} = Meq_{H_2SO_4}$$

 $Meq_{NH_3} + 0.5 \times 80 = 0.5 \times 2 \times 50$
 $Meq_{NH_3} = 50 - 40$
 $Meq_{NH_3} = 10 \text{ (x factor = 1)}$
 $W_N = 10 \times 10^{-3} \times 14$
 $\%N = \frac{0.14}{0.50} \times 100 = 28\%$

13.
$$Meq_{NH_3} = Meq_{H_2SO_4}$$

 $Meq_{NH_3} = 20 \times 1 = 20 Meq$
 $Mmol_{NH_3} = Meq_{NH_3} = Mmol_N = 20$
 $W_N = 20 \times 10^{-3} \times 14$
 $\%N = \frac{0.28}{0.6} \times 100 = 46.67\%$

14. Mole of BaSO₄ = Mole of S =
$$\frac{0.699}{233}$$

$$= 0.003$$
 moles

$$W_s = 0.003 \times 32 = 0.096 \text{ gm}$$

$$\%S = \frac{0.48}{0.096} \times 100 = 20\%$$

$$\textbf{15.} \quad \text{Meq}_{\text{NH}_3} + \text{Meq}_{\text{NaOH}} = \text{Meq}_{\text{H}_2\text{SO}_4}$$

$$Meq_{NH_3} + \frac{1}{10} \times 1 \times 20 = \frac{1}{10} \times 2 \times 60$$

$$Meq_{NH_3} = 12 - 2 = 10 Meq$$

$$Meq_{NH_3} = Mmol_{NH_3} = Mmol_N = 10$$

$$W_{N} = 10 \times 10^{-3} \times 14 \text{ gm}$$

$$\%N = \frac{0.14}{1.4} \times 100 = 10\%$$

16.
$$P = 715 - 15 = \frac{700}{760}$$
 Atm

$$V = 55 \text{ ml} = 0.0552$$

$$T = 300 \text{ K}$$

$$W_{Compound} = 0.35 \text{ gm}$$

$$PV = \frac{W_{N_2}}{28} \times RT$$

$$W_{N_2} = \frac{700}{760} \times \frac{0.055 \times 28}{0.0821 \times 300}$$

$$W_{N_2} = 0.057 \text{ gm}$$

$$\%N = \frac{0.057}{0.35} \times 100 = 16.45\%$$