QUALITATIVE AND QUANTITATIVE ANALYSIS OF ORGANIC COMPOUND EXERCISE

- In Duma's method for estimation of nitrogen 0.4 gm of an organic compound gave 60 ml of nitrogen collected at 300 K temperature and 720 mm pressure. Calculate the percentage composition of nitrogen in the compound: (Aqueous tension at 300 K = 20 mm)
 - (1) 16.72%
- (2) 15.93%
- (3) 15.72%
- (4) 7.46%
- **2.** Carbon and hydrogen are estimated in organic compounds by:
 - (1) Kjeldahl's method
- (2) Duma's method
- (3) Liebig's method
- (4) Carius method
- **3.** Lassaigne's test for the detection of nitrogen will fail in case of :
 - (1) NH₂CONH₂
 - (2) NH₂CONHNH₂.HCl
 - (3) NH₂NH₂.HCl
 - (4) C₆H₅NHNH₂.2HCl
- 4. In a Lassaigne's test for sulphur in the organic compound with sodium nitroprusside solution the violet colour formed is due to:
 - (1) Na₄[Fe(CN)₅NOS]
 - (2) Na₃[Fe(CN)₅S]
 - (3) Na₂[Fe(CN)₅NOS]
 - (4) Na₃[Fe(CN)₆]
- 5. During Lassaigne's test, N and S present individually in an organic compound changes into:
 - (1) Na₂S and NaCN
 - (2) NaSCN
 - (3) Na₂SO₄ and NaCN
 - (4) Na₂S and NaCNO
- **6.** The purpose of boiling sodium extract with conc. HNO₃ before testing for halogen is:
 - (1) to make solution acidic
 - (2) to make solution clear
 - (3) to convert Fe⁺² to Fe⁺³
 - (4) to convert NaCN to HCN and Na₂S to H₂S so that they do not interfere with AgNO₃

- **7.** In Duma's method and Kjeldahl's method, respectively nitrogen present is estimated as:
 - (1) N₂, NH₃
- (2) NH₃, N₂
- (3) NO₂, NH₃
- $(4) N_2, N_2$
- **8.** The sodium extract of an organic compound on acidified with acetic acid and addition of lead acetate solution gives a black precipitate. The organic compound contains:
 - (1) Nitrogen
- (2) Halogen
- (3) Sulphur
- (4) Phosphorous
- 9. When N and S both are present in an organic compound, the sodium extract with FeCl₃ gives:
 - (1) Green colour
- (2) Blue colour
- (3) Yellow colour
- (4) Red colour
- 10. During Lasaigne's test nitrogen containing organic compound when fused with sodium metal forms 'X' while sulphur containing organic compound. When fused with sodium metal forms 'Y'. Then identify X and Y:
 - (1) X = NaCN; $Y = Na_{o}S$
 - (2) X = NaNC, $Y = Na_{o}S$
 - (3) $X = NaNO_2$, $Y = Na_2SO_4$
 - (4) X = NaCN; $Y = Na_2SO_4$
- **11.** In Lassaigne's test, the organic compound is fused with sodium metal as to:
 - (1) Hydrolyse the compound
 - (2) Form a sodium derivative
 - (3) Burn the compound
 - (4) convert nitrogen, sulphur or halogen if present into soluble ionic sodium compound
- **12.** A sample of 0.5 g of an organic compound was analysed using Kjeldahl's method. The ammonia evolved was absorbed in 50 ml of 0.5 M H₂SO₄. the unsused acid after neutralisation by ammonia consumed 80 ml of 0.5N NaOH. Then calculate percentage of nitrogen in organic compound:
 - (1)28

(2)42

- (3)56
- (4) 26

QUALITATIVE & QUANTITATIVE ANALYSIS

- $\begin{array}{ll} \textbf{13.} & \text{In Kijeldahl's method used for estimation of nitrogen,} \\ & \text{ammonia evolved from 0.6 g of sample of organic} \\ & \text{compound} \\ & \text{neutralised} \\ & 20 \text{ ml of 1 N H}_2 \text{SO}_4. \text{ Then calculate } \% \text{ of nitrogen} \\ & \text{in that compound :} \\ \end{array}$
 - (1) 37.33
- (2)46.67
- (3)45.77
- (4) 43.33
- 14. In the estimation of sulphur by carius method 0.480~g of organic compound give 0.699~g of Barium sulphate. The percentage of sulphur in the compound is (Atomic masses; Ba = 137, S = 32, O = 16)
 - (1) 15%
- (2) 35%
- (3) 20%
- (4) 30%

- 15. 1.4 g of an organic compound was digested according to Kjeldahl's method and the ammonia evolved was absorbed in 60 mL of M/10 $\rm H_2SO_4$ solution. The excess sulphuric acid requires 20 mL of M/10 NaOH solution for neutralisation. The percentage of nitrogen in the compound is
 - (1) 3

(2)5

(3)24

- (4) 10
- 16. In Duma's method of estimation of nitrogen 0.35 g of an organic compound gave 55 ml of nitrogen collected at 300 K temp. and 715 mm pressure. The percentage of nitrogen in compound is (aqueous tension at 300 K = 15 mm)
 - (1) 15.45
- (2) 16.45
- (3) 17.45
- (4) 14.45

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	3	3	3	1	4	1	3	4	1	4	1	2	3	4
Que.	16														
Ans.	2														