P-BLOCK ELEMENTS EXERCISE

1.		oxygen atoms are present	11.	PH ₃ can be formed in					
	in P_4O_{10} ?	(2) 2 (4) 5		(1) hydrolysis of calc	cium phospinae				
•		(3) 2 (4) 5		(2) heating H ₃ PO ₃	JaOH in inert atmosphere				
2.		ng phosphorus is the most		,	VaOH in inert atmosphere				
	reactive?	(2) ***	1,	(4) All	balana asid D				
		us(2) White phosphorus	12.	A (black compound)	$\xrightarrow{\text{na logen acid}} \mathbf{B}$				
		(4) Violet phosphorus		(green yellow gas)					
3.	Which of the following	ng can be hydrolysed?		$B(excess) \xrightarrow{NH_3} C$	(unstable trihalide)				
	(1)TeF ₆	(2) NCl ₃		Correct statement is					
	(3) SF ₆	(4) Both 1 & 2		(1) C is PCl ₃	(2) halogen acid is HI				
4.	Which of the following	ng methyl diboranes does		(3) B is Cl ₂	(4) A is KMnO ₄				
	not exist ?		13.	Beryl is a type of					
	(1) $B_2H_4(CH_3)_2$	(2) $B_2H_5(CH_3)$		(1) chain silicate	(2) cyclic silicate				
	(3) $B_2H_2(CH_3)_4$	(4) $B_2H(CH_3)_5$		(3) sheet silicate	(4) 3-D silicate				
5.	Which of the followi	ng is a sesquioxide?	14.	Order of pK _a					
	$(1) N_2O_4$	(2) N_2O_3		(1) HOCl > HClO ₂ > HClO ₃ > HClO ₄					
	(3) N ₂ O	(4) N2O5		(2) $HClO_4 > HClO_3 > HClO_2 > HOCl$					
6.	-	ng does not form during		(3) $HOCl > HClO_3 > HClO_4 > HOCl$					
	hydrolysis of XeF ₆ ?	ing does not roim during	1.5	(4) HClO ₃ > HClO ₂ > HOCl > HClO ₄ Which of the following compound will not give					
	(1) XeO ₃	(2) XeOF ₄	15.	Which of the following compound will not					
	(3) XeO2F2	(4) XeOF ₃		NH_3 on heating (1) $(NH_4)_2SO_4$	(2) (NH.) CO				
_				(3) NH_4NO_2					
7.	Mixture used in Holn		16.	On hydrolysis CaC_2 gives a gas which on					
		(2) CaCl ₂ and Ca ₃ P ₂		trimerisation gives					
	(3) CaC_2 and Ca_3N_2	(4) CaC_2 and Ca_3P_2		(1) C2H2	$(2) C_6 H_6$				
8.	HNO ₂ acts as an/a			(3) C2H4	(4) C3H8				
	(1) acid	(2) oxidising agent	17.	$P+Cl_2 \rightarrow A, P + Excess Cl_2 \rightarrow B$					
	(3) reducing agent	(4) All			of A and B are respectively				
•				(1) H_3PO_2 , H_3PO_3	3 1 3 3				
9.	The nitrogen oxide that does not contain N-N			(3) H ₃ PO ₃ , H ₃ PO ₄ (4) H ₃ PO ₂ , H ₃ PO ₄ Which among the following order of given					
	bond are-		18.	properties is incorrect					
	(1) N2O	(2) N2O3		(1) $HOCl > HClO_2 >$	HClO ₃ > HClO ₄ – oxidising nature				
	$(3) N_2O_4$	(4) N2O5		(2) $Cl > F > Br > I$	Oxidising nature				
10.	Bleaching action of S	SO ₂ is due to–		- electron a					
	(1) reduction	(2) oxidation		(3) $Cl_2 > Br_2 > I_2 > F_2$ - bond dissociation energy					
				(4) HF < HCl < HBr	< HI				
	(3) hydrolysis	(4) acidic nature			 acidic nature 				

P-BLOCK ELEMENTS NEET

	The state of the s								
19.	_	ng the central atoms are	30.	In which of the following oxy acid of sulphur sulphur atoms has different oxidation states					
	directly bonded in			_					
	(1) N2O5	2 5		(1) H2S4O6	(2) H2S2O8				
	$(3) P_4 O_{10}$	(4) Mn2O7		(3) H2S2O4	(4) All				
20.		ilicones can be controlled	31.	Which of the following is most acidic?					
	by			(1) Cl ₂ O ₇	(2) SO ₃				
	(1) (CH ₃) ₃ SiCl	J		(3) P_2O_5	(4) SiO2				
	(2) Addition of Cu p		22	2 3					
	(3) Elevation of temp(4) None of these	peature	32.	Which of the follow					
21.		ng statement is incorrect		(1) Na2O2	(2) CaO ₂				
21.	regarding B ₂ H ₆ ?	ing statement is incorrect		(3) PbO ₂	$(4) H_2O_2$				
	(1) On methylation it	gives B.H(CH.).	33.	In which of the foll	owing reaction, phosphine				
	(2) It has two 2e-3C	2 5 5		is not obtained as p	roduct				
		mum six atoms in a plane		(1) $Ca_3P_2 + HCl \longrightarrow$ (2) $P_4 + NaOH \longrightarrow$					
	(4) It has four 2e ⁻ 2C	-							
22.	Red and white phosp	horus are similar in	34.	(3) $H_3PO_4 \xrightarrow{\Delta}$ (4) $H_3PO_3 \xrightarrow{\Delta}$ Correct statement about boric acid is					
	(1) smell	(2) solubility in CS ₂	J -7.						
	(3) Hybridisation of l	P (4) Stability		(1) boron is sp ³ hyb					
23.		ng is strongest oxidizing		(2) boric acid is triprotic acid					
	agent			(3) it is used in the treatement of eye infection					
	(1) HOCl	(2) HClO ₂		(4) It forms covalen	t network				
	$(3) \text{ HClO}_3$	(4) HClO ₄	35.	Which of the follo	owing oxide is acidic in				
24.	In which species O-0	O bond is present	33.	nature?					
	(1) $S_2O_8^{-2}$	(2) $S_4O_6^{-2}$			₃ (3) Ga ₂ O ₃ (4) In ₂ O ₃				
			36.						
	(3) SO_3^{-2}	(4) $S_2O_7^{-2}$	30.		y used reducing agent is				
25.	Glass is soluble in			51	$_{2}$ (3) SnCl _{$_{4}$} (4) SnCl _{$_{2}$}				
	(1) aqua ragia	(2) H2SO4	37.		owing are peroxy-acid of				
26	(3) HF	(4) HClO ₄		sulphur					
26.	Paramagnetic oxide i			(1) H_2SO_5 and $H_2S_2O_8$					
	(1) NO	$(2) N_2O_4$		(2) H_2SO_5 and $H_2S_2O_7$					
25	$(3) P_4O_6$	$(4) N_2O_5$		(3) $H_2S_2O_7$ and H_2S	$_2$ O $_8$				
27.		et act as a reducing agent		(4) $H_2S_2O_6$ and H_2S	$_{2}O_{7}$				
	(1) NO	(2) NO ₂	38.	The element which	forms neutral as well as				
Acres	$(3) N_2O$	(4) N2O5		acidic oxide is :-					
28.	Borax bead test is not given by			(1) Sn (2) Si	(3) C (4) P				
	(1) An aluminium salt (2) A cobalt salt								
20	(3) A copper salt	(4) A nickel salt	39.	P ₄ O ₁₀ has short and long P–O bonds. The number of short P–O bonds in this compound					
29.		g endothermic nature and		is:-	o condo in uno compound				
	reduction of halogen (1) $F_2 + \frac{1}{2}O_2 \rightarrow F_2O$	18		(1) 1 (2) 2	(3) 3 (4) 4				
	$(1) \Gamma_2 + 72O_2 \rightarrow \Gamma_2O$ $(2) \text{ Cl}_2 + O_2 \rightarrow \text{Cl}_2O$		40						
	(2) $Cl_2 + Cl_2 \rightarrow Cl_2 O$ (3) $F_2 + H_2 O \rightarrow 2HF$	+ ½O	40.	_	n be obtained by heating:-				
	(4) None of the above	-		(1) KNO3 (2) Pb(NO3)2					
	(1) Itolic of the abov	•		$(3) NH_4NO_3$	(4) All of these				

P-BLOCK ELEMENTS NEET $MF + XeF_4 \rightarrow 'A' (M - alkali metal)$ In the hydrolysis of ICl, the products are: 41. 52. hybridisation of A and shape of A is :-(1) HI + HCI(2) HI + HOCI (1) sp³d, Trigonal bipuramidal (3) HCI + HOI (4) HOCI + HOI Which of the following compounds are the 53. (2) sp³d³, distoted octahedral common products obtained in the hydrolysis (3) sp³d³, pentagonal planer of XeF₆ and XeF₄? (4) No compound formed at all (1) XeO,F, (2) HF Which oxide is most acidic :-42. (3) XeO₃(4) Both (2) and (3) (1) Al₂O₂(2) Na₂O 54. Find the incorrect match: (4) CaO (3) MgO (1) Al, Cl₆ : 3C-4e 43. Cl₂O₆ is an anhydride of :bond is present (2) $Al_2(CH_3)_6$: All carbon atoms are (1) HClO₃ sp³-hybridized (2) HClO₂ (3) I₂Cl₆ : Nonplanar (3) HClO₄ (4) Al₂Br₆ : Nonpolar (4) Mixed anhydride of HClO₃ & HClO₄ 55. Which of the following is not a Lewis acid? Carbogen is a mixture of 44. (1) SiF_{4} (2) FeCl_{3} (3) BF_{3} $(4) C_{2}H_{4}$ (1) O, & H, (2) CO, & O, Thallium shows different oxidation states 56. (3) O₂ & Air (4) O₂ & Ne because: 45. A black sulphide when treated with ozone (1) Of its high reactivity becomes white, the white compound is :-(2) Of inert pair of electrons (1) $ZnSO_4$ (2) CaSO₄ (3) Of its amphoteric nature (4) PbSO₄ (3) BaSO₄ (4) It is a transition metal An example of tetrabasic acid is :-46. 57. H₃BO₃ is: (1) Orthophosphorus acid (1) Monobasic and weak Lewis acid (2) Orthophophoric acid (2) Monobasic and weak bronsted acid (3) Metaphosphoric acid (3) Monobasic acid and strong Lewis acid (4) Pyrophosphoric acid (4) Tribasic acid and weak bronsted acid The reducing power of divalent species 47. 58. What is formula for carbon suboxide? decreases in the order is :-(1) CO (2) CO₂ (1) Ge > Sn > Pb(2) Sn > Ge > Pb (3) Pb > Sn > Ge $(3) C_2O_4$ $(4) C_{2}O_{2}$ (4) None of these **59.** CCl₄ is used as fire extinguisher because: Basicity of phosphinic acid is 48. (1) Its m.pt. is high (2) 2(3) 3(1) 1(4) 4(2) It forms covalent bond Empirical formula of Bleaching powder is :-49. (3) Its b.pt. is low (1) Ca(OH), (2) CaOCl, (4) It gives incombustible vapours (4) CaClO₃ (3) Ca(OCl)₂ 60. Marsh gas contains: 50. Which of the following silicate is called $(1) CH_{4}$ (2) CO₂ disilicate? $(3) C_{2}H_{6}$ $(4) N_{2}$ (1) Orthosilicate (2) Pyrosilicate 61. Carborundum is: (3) Single-chain silicate(4) None of these (1) Al₂O₃ (2) SiC (3) BF₃ (4) B₄C The cationic part of solid XeF₆ is having the 51. **62.** The acid which contains a peroxo linkage is: "_____" shape: (1) Sulphurous acid (2) Pyrosulphuric acid (1) Linear (2) Angular (3) Dithionic acid (4) Caro's acid (3) Square pyramidal (4) Tetrahedral

P-BLOCK ELEMENTS NEET

- In SiF₆²⁻ and SiCl₆²⁻, which one is known and why?
 - (1) SiF_6^{2-} because of small size of F
 - (2) SiF₆²⁻ because of large size of F
 - (3) SiCl₆²⁻ because of small size of Cl
 - (4) SiCl₆²⁻ because of large size of Cl
- The stability of dihalides of Si, Ge, Sn, and Pb 64. increase stability in the sequence:
 - (1) $PbX_2 < SnX_2 < GeX_2 < SiX_2$
 - (2) $GeX_2 < SiX_2 < SnX_2 < PbX_3$
 - (3) $SiX_2 < GeX_2 < PbX_2 < SnX_2$
 - (4) $SiX_2 < GeX_2 < SnX_2 < PbX_3$
- Products formed when Pb(NO₃)₂ is heated are: **65**.
 - (1) PbO, N_{2} , O_{2}
- (2) $Pb(NO_{2})_{2},O_{3}$
- (3) PbO,NO,,O,
- (4) Pb, N_2 , O_2
- Silver chloride dissolves in excess of NH₄OH. 66. The cation present in solution is:
 - (1) Ag^{+}
- (2) $[Ag(NH_2)_4]^+$
- (3) $[Ag(NH_3)_2]^+$
- (4) $[Ag(NH_3)_6]^+$
- **67.** The catalyst used in the manufacture of ammonia by Haber's process is:
- (2) $Fe_{2}O_{3}$ (3) $CuCl_{2}$ (4) $V_{2}O_{5}$
- 68. Industrial preparation of nitric acid by Ostwald's process involves:
 - (1) Oxidation of NH₃
 - (2) Reduction of NH₂
 - (3) Hydrogenation of NH₃
 - (4) Hydrolysis of NH₂
- When zinc reacts with very dilute nitric acid it 69. produces:
 - $(1) NH_4NO_3$
- (2) NO
- (3) NO₂
- $(4) H_{2}$
- Which of the following oxides of nitrogen is 70. the an-hydride of nitrous acid?
 - (1) NO
- $(2) N_2O_3$
- $(3) N_{2}O_{4}$
- $(4) N_{2}O_{5}$

- 71. Polar oxide of carbon is :-
 - (1) CO
- (2) CO₂
- $(3) C_3O_2$
- (4) Both 1 and 3
- 72. Aqueous solution of ammonia consists of :-
 - (1) H⁺ only
- (2) OH⁻ only
- (3) NH₄ only
- (4) NH₄⁺ and OH⁻
- 73. Phosphine, acetylene and ammonia can be formed by treating water with:
 - (1) Mg_3P_2 , Al_4C_3 , Li_3N
 - (2) Ca_3P_2 , CaC_2 , Mg_3N_2
 - (3) Ca₂P₂, Be₂C, NH₄NO₂
 - (4) Ca₃P₂,Mg₂C₃,NH₄NO₃
- 74. Atoms in P₄ molecule of white phosphorus are arranged regularly in the following way:
 - (1) At the corners of a cube
 - (2) At the corners of an octahedron
 - (3) At the corners of a tetrahedron
 - (4) At the center and corners of a tetrahedron
- 75. Which is formed when K₂Cr₂O₇, CaCl₂, and conc. H₂SO₄ are heated?
 - (1) $Cr_2(SO_4)_3$
- (2) CrCl₃
- (3) CrO₂Cl₂
- $(4) K_2 CrO_4$
- 76. Which one of the following reactions does not
 - (1) $F_2 + 2Cl^- \longrightarrow 2F^- + Cl_2$
 - (2) $Cl_2 + 2F^- \longrightarrow 2Cl^- + F_2$
 - (3) $Br_2 + 2I^- \longrightarrow 2Br^- + l$,
 - (4) $Cl_2 + 2Br^- \longrightarrow 2Cl^- + Br_2$
- 77. BCl₃ does not exist as dimer but BH₃ exists as dimer (B₂H₆) because:
 - (1) Chlorine is more electronegative than hydrogen
 - (2) There is $p_{\pi} p_{\pi}$ back bonding in BCl₃, but BH, does not contain such multiple bonding
 - (3) Large sized chlorine atoms do not fit in between the small boron atoms, whereas small-sized hydrogen atoms fit between boron atoms
 - (4) None of these

P-BLOCK ELEMENTS NEET 88. Which one is not an acid salt? 78. Red lead is: (1) NaH₂PO₂ (2) NaH₂PO₂ (1) PbO (2) Pb₃O₄ (3) NaH₂PO₄ (4) None of these (4) HgS (3) PbO₂ 89. The most thermodynamically stable allotropic 79. The most stable and basic hydride of 15th group form of phosphorus is: is: (1) Red (2) White (3) AsH₂ (4) BiH₂ (1) NH, (2) PH₂ (4) Yellow (3) Black 80. C — C bond length is maximum in: 90. Identify the incorrect statement among the (1) Diamond (2) Graphite following: (3) Napthalene (4) Fullerene (1) Ozone reacts with SO, to give SO, 81. N forms NCl₃, whereas P can form both PCl₃ (2) Silicon reacts with NaOH(aq.) in the and PCl₅. Why? presence of air to give Na,SiO, (3) Cl₂ reacts with excess of NH₃ to give N₂ (1) P has vacant d-orbitals which can be used and NH₄Cl. for bonding but N does not have (4) Br, reacts with hot and strong NaOH (2) N atom is larger in size than P solution to give NaBr, NaBrO₄ and H₂O. (3) P is more reactive towards Cl than N 91. The product of oxidation of I- with MnO₄- in (4) None of the above alkaline medium is: 82. Which is in the decreasing order of boiling $(1) IO_{2}^{-}$ $(2) I_{2}^{-}$ (3) IO⁻ (4) IO,points of VA group hydrides? 92. The chemical formula of feldspar is: (1) $NH_3 > PH_3 > AsH_3 > SbH_3$ (1) KAlSi₃O₈ (2) Na₂AIF₆ (2) $SbH_3 > AsH_3 > PH_3 > NH_3$ (3) NaAlO₂ $(4) K_2SO_4$ 93. (3) $PH_3 > NH_3 > AsH_3 > SbH_3$ Which of the following is correct match: (1) Gun metal \rightarrow Cu, Sn & Zn $(4) SbH_3 > NH_3 > AsH_3 > PH_3$ (Red brass) 83. Which compound acts as an oxidizing as well (2) White metal \rightarrow Contains Li as a reducing agent? (3) Stainless Steel \rightarrow Fe, Cr, Ni, Carbon (2) Mn₂O₇(1) SO, (4) All (3) Al₂O₂ (4) CrO₂ 94. Which is used for estimation of 84. The most powerful oxidizing agent is: carbonmonooxide? (1) Fluorine (2) Chlorine $(1) I_{2}O_{5}$ (2) ClO₂ (3) BrO₃ (4) Iodine (3) Bromine 95. There is no S-S bond in 85. Which one of the hydracids does not form any (1) $S_2O_4^{2-}$ (2) $S_2O_5^{2-}$ precipitate with AgNO₃? (2) HCl (3) HBr (3) $S_2O_3^{2-}$ (4) $S_2O_7^{2-}$ Which of the following structure is non-planar? 86. 96. Total number of lone pairs of electron and $(1) Na_3B_3O_6$ P-O-P linkage present in dimer of P₂O₅ are : (2) I₂Cl₆ (1) 16(2) 22(4) 30(3) 26(3) Sheet silicates 97. The number of S—S bonds in polythionic acid (4) Inorganic graphite layer $(H_2S_nO_6)$: 87. In the reaction LiH + AlH₃ \longrightarrow LiAlH₄ AlH₃ (1) n (2) n - 1and LiH act as: (3) n - 2(4) None of these (1) Lewis acid and Lewis base 98. Which of the following halogen oxides is (2) Lewis base and Lewis acid

ionic?

 $(1) I_4O_0$

 $(2) I_{2}O_{5}$

(3) BrO₂

(4) CℓO₃

(3) Bronsted base and Bronsted acid

(4) None of these

P-BLOCK ELEMENTS NEET

- **99.** Antichlor is a compound:
 - (1) Which absorbs chlorine
 - (2) Which removes excess of Cl₂ from a material
 - (3) Which liberates Cl, from bleaching powder
 - (4) Which acts as a catalyst in the manufacture of Cl,
- **100.** Which of the following statements regarding orthoboric acid (H₂BO₂) is false?
 - (1) It acts as a weak monobasic acid
 - (2) It is soluble in hot water
 - (3) It has a planar structure
 - (4) It acts as a tribasic acid
- **101.** Which of the following oxides is acidic in nature?
 - (1) B₂O₃ (2) Al₂O₃ (3) Ga₂O₃ (4) ZnO
- **102.** Catenation i.e., linking of similar atoms depends on size and electronic configuration of atoms. The tendency of catenation in group 14 elements follows the order
 - (1) C > Si > Ge > Sn
- (2) $C \gg Si \gg Ge \approx Sn$
- (3) Si > C > Sn > Ge
- (4) Ge > Sn > Si > C
- **103.** Cement, the important building material is a mixture of oxides of several elements. Besides calcium, iron and sulphur, oxides of elements of which of the group(s) are present in the mixture?
 - (1) Group 2
 - (2) Groups 2, 13 and 14
 - (3) Groups 2 and 13
 - (4) Groups 2 and 14

- **104.** The possible oxidation state of Tl are:
 - (1) + 1 and +2
- (2) + 2 and +3
- (3) + 1 and -1
- (4) + 1 and + 3
- **105.** Nitrogen gas is liberated by thermal decomposition of :
 - (1) NH₄NO₂
- (2) NaN₃
- $(3) (NH_4)_2 Cr_2 O_7$
- (4) All
- **106.** $BX_3 + NH_3 \xrightarrow{R.T.} BX_3 \cdot NH_3 + Heat$ of adduct formation (ΔH), ΔH is maximum for (Numerical value)
 - (1) BF₃
- (2) BCl₂
- (3) BBr₃
- (4) BI₃
- **107.** Which of the following oxyacid contains both P–H and P–P bond simultaneously?
 - (1) H₄P₂O₅
- (2) $H_4P_2O_7$
- $(3) H_4 P_2 O_6$
- (4) None
- **108.** $Na_2B_4O_7 \cdot 10H_2O \xrightarrow{\text{Heat}} X + NaBO_2 + H_2O$,

$$X + Cr_2O_3 \xrightarrow{\text{Heat}} Y X \text{ and } Y \text{ are } :$$

- (1) Na₃BO₃ and Cr(BO₂)₃
- (2) $Na_2B_4O_7$ and $Cr(BO_2)_3$
- (3) B_2O_3 and $Cr(BO_2)_3$
- (4) B₂O₃ and CrBO₃

P-BLOCK ELEMENTS

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	2	4	4	2	4	4	4	4	1	4	3	2	1	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	3	3	2	1	1	3	1	1	3	1	4	1	3	1
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	1	3	3	3	1	4	1	3	4	2	3	1	4	2	4
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	1	1	2	2	3	3	4	3	4	2	1	4	4	1
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	2	4	1	4	3	3	2	1	1	2	1	4	2	3	3
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	2	3	2	1	1	1	4	1	1	1	3	1	1	3	4
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
Ans.	1	1	4	1	4	3	2	1	2	4	1	2	2	4	4
Que.	106	107	108												
Ans.	4	4	3												