HYDROGEN & IT'S COMPOUNDS EXERCISE

- 1. The hydride ion H⁻ is a stronger base than hydroxide ion. Which of the following reaction will occur if NaH is dissolved in water.
 - (1) $H_{aq}^- + H_2O_{(\ell)} \longrightarrow H_3O_{aq}^+$
 - (2) $H_{aq}^- + H_2O_{(\ell)} \longrightarrow OH_{aq}^- + H_{2(g)}$
 - (3) $H_{aq}^- + H_2O_{(\ell)} \longrightarrow$ no reaction
 - (4) None of these
- 2. Hydrogen peroxide is reduced by
 - (1) Ozone
 - (2) Barium peroxide
 - (3) Acidic solution of KMnO₄
 - (4) Lead sulphide
- 3. Water softening by Clark's process uses
 - (1) Calcium bicarbonate
 - (2) Sodium bicarbonate
 - (3) Potash alum
 - (4) Calcium hydroxide (Slaked lime)
- **4.** Which of the following isotope of hydrogen is radioactive?
 - $(1) _{1}H^{1}$
- $(2)_{1}H^{2}$
- $(3) _{1}H^{3}$
- (4) Both 2 & 3
- **5.** Which reaction is not used in the preparation of H₂?
 - (1) $Zn + NaOH \rightarrow$
- (2) Mg + NaOH \rightarrow
- $(3) Al + NaOH \rightarrow$
- (4) Be + NaOH \rightarrow
- **6.** Which of the following is water gas shift reaction?
 - $(1) CO + H_2O \rightarrow CO_2 + H_2$
 - $(2) C + H_2O \rightarrow CO$
 - (3) $CO + O_2 \rightarrow CO_3$
 - (4) CO + H₂ \rightarrow CH₃OH
- 7. Which cannot be oxidised by H_2O_2 ?
 - (1) Na₂SO₃
- (2) PbS
- (3) KI
- $(4) O_{2}$
- 8. Which of the following reaction represents the oxidising property of H_2O_2 ?
 - (1) $KMnO_4 + H_2SO_4 + H_2O_2$

$$\longrightarrow$$
 K₂SO₄ + MnSO₄ + H₂O + O₅

(2) $K_3[Fe(CN)_6] + KOH + H_2O_2$

$$\longrightarrow$$
 $K_4[Fe(CN)_6] + H_2O + O_2$

- (3) $PbO_2 + H_2O_2 \longrightarrow PbO + H_2O + O_2$
- (4) None of these

- **9.** Permanent hardness can be removed by addding
 - (1) Cl₂
- $(2) Na_2CO_3$
- (3) CaOCl₂
- $(4) K_2CO_3$
- **10.** Calgon used as water softner is?
 - (1) $Na_6P_6O_{18}$
- (2) $Na_{4}P_{6}O_{18}$
- (3) $Na_6P_4O_{18}$
- $(4) Na_6P_5O_{10}$
- 11. Which is not present in clear hard water
 - (1) $Mg(HCO_3)_2$
- (2) CaCl₂
- (3) MgSO₄
- (4) MgCO₃
- **12.** What is formed when calcium carbide reacts with heavy water ?
 - $(1) C_{2}D_{3}$
- (2) CaD,
- (3) Ca₂D₂O
- (4) CD₂
- **13.** The adsorption of hydrogen by metals is called:
 - (2) 0--1---
 - (1) Dehydrogenation (2) Hydrogenation
 - (3) Occlusion
- (4) Absorption
- **14.** Which of the following produces hydrolith with dihydrogen?
 - (1) Mg
- (2) Al
- (3) Cu
- (4) Ca
- 15. An ionic compound is dissolved simultaneously in heavy water and simple water. Its solubility is:
 - (1) Higher in heavy water
 - (2) Lesser in heavy water
 - (3) Same in both
 - (4) Lesser in simple water
- **16.** Hydrogen can be prepared by mixing steam and water gas at 673 K in the presence of Fe₂O₃ and Cr₂O₃. This process is called:
 - (1) Nelson's process
 - (2) Serpeck's process
 - (3) Bosch's process
 - (4) Parke's process
- **17.** Temporary hardness of water is due to the presence of:
 - (1) Magnesium bicarbonate
 - (2) Calcium chloride
 - (3) Magnesium sulphate
 - (4) Calcium carbonate

- Metal hydrides are ionic, covalent or molecular 18. in nature among LiH, NaH, KH, RbH, CsH, the correct order of increasing ionic character is:
 - (1) LiH > NaH > CsH > KH > RbH
 - (2) LiH < NaH < KH < RbH < CsH
 - (3) RbH > CsH > NaH > KH > LiH
 - (4) NaH > CsH > RbH > LiH > KH
- 19. Which of the following hydride is electron precise hydride?
 - $(1) B_{2}H_{6}$
- (2) NH₃ (3) H₂O (4) CH₄
- 20. The compound that gives H₂O₂ on treatment with dilute H₂SO₄ is:
 - (1) PbO,
- (2) BaO, 8H, O
- (3) MnO₂
- (4) TiO,

- 21. Which of the following equation depict the oxidizing nature of H₂O₂?
 - (1) $MnO_4^- + 6H^+ + 5H_2O_2 \rightarrow 2Mn^{2+} + 8H_2O_1 + 5O_2$
 - (2) $2Fe^{3+} + 2H^{+} + H_{2}O_{2} \rightarrow 2Fe^{2+} + 2H_{2}O + O_{3}$
 - (3) $2I^{-} + 2H^{+} + H_{2}O_{2} \rightarrow I_{2} + 2H_{2}O_{2}$
 - (4) $KIO_4 + H_2O_2 \rightarrow KIO_3 + H_2O + O_2$
- Which of the following equation depicts 22. reducing nature of H₂O₂?
 - (1) $2[Fe(CN)_{6}]^{4-}+2H^{+}+H_{2}O_{2}\rightarrow 2[Fe(CN)_{6}]^{3-}+2H_{2}O_{2}$
 - (2) $I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$
 - (3) $Mn^{2+} + H_2O_2 \rightarrow Mn^{4+} + 2OH^-$
 - (4) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$

HYDROGEN & IT'S COMPOUNDS

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	4	4	3	2	1	4	4	2	1	4	1	3	4	2
Que.	16	17	18	19	20	21	22								
Ans.	3	1	2	4	2	3	2								