CHEMICAL BONDING EXERCISE

1.	Which of the followi	ng molecule/species have	10.	Corr	ect m	atch is :-					
1.	a same bond order as		10.	Com		Ion	Bond order of				
	(1) NO	(2) N ₂					M-O bond				
	(3) N_2^+	(4) All of these			(a)	ClO ₄ -	4				
2.	2	ing molecule/species are			(b)	PO_4^{-3}	$\frac{3}{4}$				
	iso-structural with N				(c)	NO ₂	$\frac{2}{3}$				
	(1) I ₃ ⁺	(2) I ₃			(d)	CO_3^{-2}	5/3				
		-		(1) d		(2) a,		na			
2	(3) NH ₂	(4) HCO ₂	11.	30 (5)		iso-struct		пе			
3.	iso-electronic?	ving pair of species are				Cl_2^-, ClF_3					
	(1) CN ⁻ & NO ⁺	(2) $N_2^- \& N_2^+$		(3) (CO_2, X	$\text{KeF}_2, \text{I}_3^-$	(4) PCl ₅ , XeOF ₂ , ICl ₅				
	(3) $H_2^{\oplus} \& H_2^{-}$	(4) CO & NO ⁻	12.	Which of the following molecule have both							
4.	Which of the fo	ollowing molecule is		pπ -	рт а	nd pπ –	$d\pi$ bonding?				
	hypovalent?			(1) (ClO_2^+	(2) NO	O_2^+ (3) SO_3^{2-} (4) CIO_4^-				
	(1) AlF ₃	(2) ICl ₂	13.				r out of given options:-				
	(3) BCl ₃	(4) ICl ₂ ⁺					$D_3 \rightarrow Covalent character$ Lattice energy				
5.	Determine the bond of	order & formal charge on					Hydration energy				
	each oxygen atom in	HCO ₂ respectively?					Ionic Mobility				
	(1) 1.5, -0.5		14.				wing statement are true a	nd			
6.		(4) 1.5, -1.33 ect order of bond angle?		false							
0.	(1) $NH_3 < NF_3 < NCI$					5	isation is sp ³ d and it has	s a			
	(2) $OF_2 < OH_2 < OCI$						idal structure.	00			
	(3) SF2 < SCl2 < SBr2 < S					-	ween the P-Cl bonds is 90 for all the P and Cl prese				
	$(4) \text{ClO}_2 > \text{ClO}_2^{-1} > 0$	-			n PCl		Ţ.				
7.		ollowing molecule is				_	h of P-Cl in axial position equitorial position	is			
	(1) XeF ₄	(2) NH ₂			-		dipole moment				
	(3) PF ₃ Cl ₂	(4) PCl ₃ F ₂					t option.				
8.	Which of the followi	3 2		(1) T	FTT		(2) FTTT				
	(1) Solid CO ₂	(2) SiO ₂		(3) F	FTT		(4) TFFT				
	(3) Diamond	(4) 2 & 3 both	15.	Bono	d leng	th and	bond energy order is sar	ne			
9.		-character in the orbitals		for :		Q; Q;	S Co. Co.				
	forming P–P bonds in	-1				> S1 - S1 : > O - O >	> Ge - Ge > F - F				
	(1) 25	(2) 33				· C - O >					
	(3) 50	(4) 75		(4) 1		. D.	ī				

(4) $F_2 > Cl_2 > Br_2 > I_2$

- 16. Which halide has highest melting point?
 - (1) NaCl
- (2) LiCl
- (3) LiBr
- (4) NaI
- 17. If AB_4^n , type species are tetrahedral, then which of the following is incorrectly matched?
 - A (1)Xe
- В n O
- (2)Se
- Zero F Zero
- (3)Р
- O -3
- (4)N
- Η +1
- 18. The species having no $p\pi - p\pi$ bond but its bond order equal to that of O_2^-
 - (1) ClO_3^-
- (2) PO_4^{3-}
- (3) SO_4^{2-}
- (4) XeO₃
- How many π -bond does C_2 have? 19.
 - (1) 1

(2) 2

(3) 0

- (4) 3
- Which of the following is not true about H₂O 20. molecule?
 - (1) The molecule has $\mu = 0$
 - (2) The molecule can act as a base
 - (3) Shows abnormally high boiling point in comparison to the hydrides of other elements of oxygen group
 - (4) The molecule has a bent shape
- 21. Match the following and choose the correct option given below.
 - (a) $N_2 \rightarrow N_2^+$ (p) bond order increases
 - (b) $N_2 \rightarrow N_2^-$ (q) bond order decreases
 - (c) $O_2 \rightarrow O_2^+$ (r) paramagnetism increases
 - (d) $O_2 \rightarrow O_2^-$ (s) paramagnetism decreases
 - (t) No change in bond order
 - (1) a (q, r), b (q, r), c (p, s), d (q, s)
 - (2) a (q, s), b (q, s), c (p, s), d (q, r)
 - (3) a (p, q), b (q, s), c (p, r), d (q, t)
 - (4) a (p, s), b (q, p), c (q, t), d (q, t)
- 22. Which pair(s) has same bond angle?
 - (a) BF₃, BCl₃
- (b) PO_4^{-3}, SO_4^{-2}
- (c) BF₂, PF₂
- (d) NO_2^+, N_2O
- (e) N_3^-, NO_2

correct option are -

- (1) a, b, d
- (2) b, d
- (3) b, c, d
- (4) a, d, e
- 23. Which is correct?
 - (1) PbS > ZnS (Solubility)
 - (2) Li₂CO₃ > Na₂CO₃ (Thermal stability)
 - (3) NaF > KF (Lattice energy)
 - (4) BaSO₄ > MgSO₄ (Solubility)
- Which among the following attractions is 24. strongest?
 - (1) HFH,O
- (2) Na+....H-Cl
- (3) H₂O...Cl₂
- (4) Cl-Cl...Cl-Cl
- 25. Among the following, the pair in which the two species are not iso-structural is

 - (1) IO_3^- and NH_3 (2) BH_4^- and NH_4^+

 - (3) PF_6^- and SF_6 (4) SiF_4 and SF_4
- 26. Which of the following is correct statement?
 - (a) AlCl₃ is conducting in fused state
 - (b) Mobility of Li⁺ ion in water is greater than Cs⁺ ion
 - (c) MCl₂ is more volatile than MCl₄
 - (d) $BeSO_4$ is more soluble in water than $BaSO_4$
 - (1) a, b
- (2) b, c, d
- (3) b, d
- (4) Only d
- 27. Which of the following order is not correct :-
 - (1) $SO_4^{-2} = PO_4^{-3} = CIO_4^{-}$ Bond angle
 - (2) $OCl_2 < ClO_2$ Bond angle
 - (3) $ZnCl_2 < CdCl_2 < HgCl_2$ ionic character
 - (4) $CH_3-Cl > CH_3F > CH_3-Br > CH_3-I$ Dipole moment
- 28. **Statement-1**: p-Hydroxybenzoic acid has a lower boiling point than o-hydroxybenzoic acid.

Statement-2: o-Hydroxybenzoic acid has intermolecular hydrogen bonding.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (3) Statement-1 is True, Statement-2 is False.
- (4) Statement-1 is False, Statement-2 is False.

34.

- Hydration energy of Mg²⁺ is higher than 29.
 - (1) Be^{2+}
- (2) Na[⊕]
- (3) Al³⁺
- (4) All of these
- 30. Total number of sp-hybridised C-atoms in the following Hydrocarbon will be:

$$H_3C - C \equiv C - CH = CH_2$$

- (1) 5
- (2) 4
- (3) 2
- (4) 1
- 31. Match the column

Column I

Column II

- (a) C,H,
- (P) sp³d hybridisation (Q) sp³ hybridisation
- (b) SO,
- (R) sp² hybridisation
- (c) I_{3}^{-} (d) NH_4^+
- (S) sp hybridisation
- (1) (a) S
- (c) R (d) Q
- (2) (a) P
- (b) P (b) S
- (c) R
- (d) Q

- (3) (a) S (b) R
- (c) P
- (d) O

- (4) (a) R
- (c) P
- (b) S
- (d) Q
- 32. Match the column

Column I

Column II

(Solid)

(Examples)

- (a) Covalent
- (P) SiO,
- (b) Molecular
- (Q) CaO
- (c) Ionic
- (R) CCl₄
- (d) Metallic
- (S) Bronze
- (1) (a) P
- (b) O
- (c) R
- (d) S

- (2) (a) R
- (b) P
- (c) Q

- (d) S

- (3) (a) S
- (b) P
- (c) Q
- (d) R

- (4) (a) P (b) R
- (c) Q
- (d) S
- 33. Match the column

Compound

No. of $\sigma \& \pi$ Bonds

- (a) $H_2S_2O_2$
- (P) $6 \sigma \& 2 \pi$
- (b) H,SO₅
- $(Q) 11 \sigma & 4 \pi$
- (c) H₂S₂O₈
- (R) $9 \sigma \& 4 \pi$
- (d) H₂S₂O₆

- (S) $7 \sigma \& 2 \pi$
- (1) (a) S
 - (b) P
- (c) Q
- (d) R

- (2) (a) P
- (b) S
- (c) Q
- (d) R

- (3) (a) P
 - (b) O
- (c) R
- (d) S (d) R

- (4) (a) Q
- (b) S
- (c) P

Match the column

- Shape
- Compound (a) XeO₂F₂
- (P) Linear
- (b) XeF₅
- (O) Square planar

(c) I_3^-

- (R) See-saw
- (d) XeF₄
- (S) Pentagonal planar
- (1) (a) R
- (c) P
- (c) Q
- (2) (a) R (b) S (3) (a) P

(b) S

(b) S

- (c) Q
- (c) P
- (d) P (d) R (d) R

(d) Q

- (4) (a) S (b) Q 35. Which is incorrect?
 - (1) Dipole moment order \rightarrow CH₄ < NF₂ < NH₂ < H₂O
 - (2) For PCl₅ molecule \rightarrow B.L._{equatotial} < B.L._{Axial}
 - (3) Melting point order $\rightarrow H_2O_{(s)} > NH_{3(s)} > HF_{(s)}$
 - (4) no. of unpaired e^- in $H_2O_2 = 1$
- 36. Which is correct?
 - (1) Bond order \rightarrow CO > CO₃²⁻
 - (2) Bond angle $\rightarrow PH_3 > PF_3$
 - (3) Bond energy $\rightarrow Cl_2 > Br_2 > I_2 > F_2$
 - (4) Bond length order \rightarrow C-C < N-N < O-O < F-F
- 37. Which is not correct?
 - (1) White vitriol and epsom salt are isomorphous
 - (2) Thermal stability
 - \rightarrow BeCO₃ < MgCO₃ < CaCO₃ < SrCO₃
 - (3) Solubility
 - \rightarrow NaHCO₃ < KHCO₃ < RbHCO₃ < CsHCO₃
 - (4) Melting point \rightarrow Al₂O₃ < MgF,
- 38. Which molecule does not exist?
 - (1) MnF₄
- (2) SH_c
- $(3) (BCl_3)_2$
- (4) 2 & 3 both
- 39. Which is correct?
 - (1) Ionic mobility in aqueous medium
 - $\rightarrow Li^+ < Na^+ < K^+ < Rb^+$
 - (2) Covalant character \rightarrow KCl > CaCl₂ > AlCl₃ > SnCl₄
 - (3) Boiling point order \rightarrow H,O > H,Se > H,Te > H,S
 - (4) Dipole dipole attraction \rightarrow KCl + H₂O

- 40. Which is correct?
 - (1) Stability order

- (2) In $XeF_6(s)$ hybridisation of anion $\rightarrow sp^3d$
- (3) For O₂ molecule bond order is 2.0
- (4) Bond angle order $CF_4 < CH_4$
- 41. Match column-I and Column-II

Column-I

Column-II

- (A) SF
- (1) Tetrahedral
- (B) BrF₂
- (2) Pyramidal
- (C) BrO₂
- (3) See-saw
- (D) NH₄+
- (4) Bent-T

Code:

- (1) A (3), B (2), C (1), D (4)
- (2) A (3), B (4), C (2), (D) 1
- (3) A (2), B (4), C (3), (D) 1
- (4) A (1), B (4), C (2), D (3)
- 42. Consider the following order
 - (1) $PH_3 > NH_3 > AsH_3$ (basic character)
 - (2) $PH_3 > NH_3 > AsH_3$ (boiling point)
 - $(3) \text{ HOCl} > \text{HClO}_2 > \text{HClO}_3 > \text{HClO}_4$ (oxidising property)
 - (4) HF > HCl > HBr > HI (acidic)
 - (5) $H_2O > H_2S > H_2Se$ (bond angle)
 - (6) $H_2SO_4 > H_3PO_4 > H_2CO_3$ (acidic character) correct order(s) are
 - (1) 1,2,4,5
- (2) 2,3,5,6
- (3) 3,5,6
- (4) 4,5,6
- Which solubility order is correct? 43.
 - (1) $BaSO_4 > SrSO_4 > CaSO_4 > MgSO_4$
 - (2) ZnS > Na₂S > CoS
 - (3) $BaCO_3 > MgCO_3 > Na_3CO_3$
 - (4) KOH > NaOH > Mg(OH),
- What is incorrect about reaction of NH, and 44. BF,?
 - (1) hyrbridisation of both N & B change
 - (2) It is an example of redox change
 - (3) In the final adduct formed, back bonding appears between B & N
 - (4) All

45. In which molecule / ion there are more than one type of XO bond lengths

- (a) NO₃-
- (b) $Cr_2O_7^{2-}$
- (c) HCOO-
- (d) HClO,
- (e) PO₄3-
- correct code is
- (f) SO_4^{2-}
- (1) a,b,d
- (2) b,d
- (3) b,c,d,f
- (4) a,b,c,f

Correct order of dipole moment is (decreasing 46. order)

- (1) CH₂Cl, CH₂Br, CH₂F
- (2) CH₂F, CH₂Cl, CH₂Br
- (3) CH₂Cl, CH₂F, CH₂Br
- (4) CH₂Br, CH₂Cl, CH₂F
- 47. Correct order of stability of species
 - N_2, N_2^+, N_2^-
 - (1) $N_2 > N_2^+ = N_2^-$ (2) $N_2 > N_2^+ > N_2^-$
 - (3) $N_2 > N_2^- > N_2^+$ (4) $N_2^+ > N_2 > N_2^-$
- 48. Isostructural species are those which have same shape. Among the following pairs identify isostructural pairs.
 - (1) [NF₃ & BF₃]
- (2) $[BF_{4}^{-} \& NH_{4}^{+}]$
- (3) [BCl₃ & BrCl₃]
- (4) [NH₂ & NO₂-]

49. Which is not stable

- (1) KHF,
- (2) KI₃
- (3) CH₃-CH(OH),
- (4) Cl₃C-CH(OH),
- 50. Which of the following compound will give metal and oxygen gas at high temperature
 - (1) NaNO₂
- (2) Ag₂CO₂
- $(3) K_2CO_3$
- (4) Li₂CO₂
- 51. Based on VSEPR theory, the number of 90 degree F-Br-F angles in BrF, is
 - (1) 5

(2) 4

(3) 0

(4) 1

52. Which of the following represent most effective π -bond

- (1) $2p\pi 3p\pi$
- (2) $3d\pi$ - $3d\pi$
- (3) $2p\pi 3d\pi$
- (4) $3d\pi 3p\pi$

53. In which reaction hybridisation of underlined atom does not change.

- (1) $\underline{B}F_2 + F^- \rightarrow BF_4$
- (2) $NH_2 + H^+ \rightarrow NH_4^+$
- (3) $\underline{B}F_3 + NH_3 \rightarrow BF_3.NH_3$
- $(4) \underline{SiF}_4 + 2F^- \rightarrow SiF_6^{2-}$

54. Dipole moment of is 1.5 D. The dipole

- (1) 1.5 D
- (2) 3.0 D
- (3) 1.0 D
- (4) 2.35 D
- 55. Which of the following compound has nonzero dipole moment
- (1) XeF_4 (2) B_2H_6 (3) PF_3Cl_2 (4) PCl_3F_2
- Which of the following molecule is planar due 56. to back bonding
 - (1) NCl₂ (2) PF₂
- (3) BF₂
- (4) None
- 57. Amongst the following, molecule having maximum bond angles of 90° is
 - (1) XeF_4 (2) XeF_6 (3) SF_6

- $(4) \text{ IF}_7$
- 58. Which of the following statement is incorrect
 - (1) Removal of an electron is easier from O₂ in comparison to O_2^{+2}
 - (2) In the double bond of C₂ molecule, both are π -bonds
 - (3) NO is more stable than NO⁺
 - (4) NO₂⁺ and CO₂ are isoelectronic and isostructural
- 59. The coordinate bond is absent in
 - (1) NaNO₃
- (2) CaCO,
- (3) O_3
- (4) KNC
- 60. Which of the following is least stable
 - (1) O⁻
- (2) C⁻
 - $(3) B^{-}$
 - (4) Be⁻
- The true statements from the following are 61.
 - (1) PH₅, NCl₅ and BiCl₅ do not exist
 - (2) I_3^- has bent geometry
 - (3) XeF₄ is polar molecule
 - (4) O_2 and O_2^{-2} has same bond order
- The bond order for NO and NO+, respectively **62.** are
 - (1) 3.0, 2.5
- (2) 2.5, 3.0
- (3) 3.0, 3.0
- (4) 2.5, 2.5

- 63. Back bonding always changes
 - (1) bond angle
 - (2) hybridisation of central atom
 - (3) planarity
 - (4) bond length
 - Bond angle in H₂O is 64.
 - (1) 104.5° (2) 120° (3) 109.5° (4) 107°
 - 65. The correct stability order of N₂ and its given ions is
 - (1) $N_2 > N_2^+ > N_2^- > N_2^{2-}$
 - (2) $N_2^- > N_2^+ > N_2^- > N_2^{2-}$
 - (3) $N_2^+ > N_2^- > N_2 > N_2^{2-}$
 - (4) $N_2 > N_2^+ = N_2^- > N_2^{2-}$
 - Which of the following have same bond 66. order:-
 - (I) CO (II) CN
- $(III) O_2^+ (IV) NO^+$
- (1) I, II, III
- (2) I, II, IV
- (3) I, III, IV
- (4) II, III, IV
- In XeF₂, XeF₄ and XeF₆ the number of lone 67. pairs of electron on Xe are respectively
 - (1) 2, 3, 1 (2) 1,2,3 (3) 4,1,2 (4) 3,2,1
- 68. Which one is most soluble in water
 - (1) Mg(OH),
- (2) Sr(OH),
- (3) Ca(OH),
- (4) Ba(OH),
- 69. The correct order of N-O bond length is
 - (1) $NO_3^- > NO_2^+ > NO_2^-$
 - (2) $NO_3^- > NO_2^- > NO_2^+$
 - (3) $NO_{2}^{+} > NO_{2}^{-} > NO_{2}^{-}$
 - $(4) NO_2^- > NO_3^- > NO_2^+$
- 70. The correct order of A-O-A bond angle of (A=H, F or Cl)
 - (1) $H_2O > Cl_2O > F_2O$ (2) $Cl_2O > H_2O > F_2O$
 - (3) $F_0 > Cl_0 > H_0 (4) F_0 > H_0 > Cl_0$
- 71. There are some species given below :-
 - (a) O_{2}^{+}

(b) CO

(c) B_2

- (d) O_{2}^{-}
- (e) NO+
- (f) He_2^+

(g) C_2^{+2}

(h) CN-

(i) N_{2}^{-}

Total no. of species which have their fractional bond order.

- (1) 3
- (2) 4
- (3) 5
- (4) 6

- Which of the following has fractional bond 72. order
 - $(1) O_2^{2+}$
- (2) O_2^{2-}
- $(3) F_2^{2-}$
- $(4) H_{2}^{-}$
- 73. When AgNO₃ is heated strongly, the product formed are
 - (1) NO and NO₂ (2) NO₂ and O₂
- - (3) NO₂ and N₂O (4) NO and O,
- Which of the following carbonate of a metals 74. has the least thermal stability
 - (1) Li₂CO₂
- $(2) K_2CO_2$
- (3) Cs₂CO₂
- (4) Na₂CO₂
- Which of the following order is not correct :-75.
 - (1) $N_2 < N_2^+$ (Bond length)
 - (2) $O_2 < O_2^+$ (Bond strength)
 - (3) $O_2 < O$ (IP)
 - (4) NO < NO⁺ (Magnetic moment)
- 76. The state of hybridisation for the transition state of hydrolysis mechanism of BCl3 and SF4 are respectively
 - (1) sp^2 , sp^3d
- (2) sp^3 , sp^2
- (3) sp^3 , sp^3
- (4) sp^3 , sp^3d^2
- The dipole moment of AX₃, BX₃ and CY₃ are 77. 4.97×10^{-30} , 0.60×10^{-30} and 0.00 Cm respectively then the shape of molecule may be
 - (1) pyramidal, T-shape, trigonal planar
 - (2) pyramidal, trigonal planar, T-shape
 - (3) T-shape, pyramidal, trigonal planar
 - (4) pyramidal, T-shape, linear
- The bond strength in O_2^+ , O_2 , O_2^- & O_2^{2-} **78.** follows the order
 - (1) $O_{2}^{-} > O_{2}^{-} > O_{2} > O_{2}^{+}$
 - (2) $O_2^+ > O_2^- > O_2^- > O_2^{2-}$
 - (3) $O_2 > O_2^- > O_2^{2-} > O_2^+$
 - (4) $O_2^- > O_2^{2-} > O_2^+ > O_2^+$
- 79. A compound which leaves behind no residue on heating is
 - $(1) Cu(NO_2)$
- (2) KNO₂
- (3) NH₄NO₂
- (4) None of these

- 80. Which of the following molecule is polar and non-planar
 - (1) XeF,
- (2) XeF₋
- (3) CH₂F₂
- (4) ClF,
- 81. Dipole moment of NH₂ is more than NF₃
 - (1) N-F bond is more polar than N-H bond
 - (2) NH₃ is pyramidal while NF₃ is planar
 - (3) In NH₃ orbital dipole due to lone pair is in the same direction as the resultant dipole moment of N-H bonds while in NF, orbital dipole due to lone pair is opposite direction of the resultant dipole moment of N-F bonds
 - (4) None of these
- Which of the following pairs of ions are 82. isoelectronic and isostructural

 - (1) CO_{3}^{-2} , NO_{3}^{-1} (2) CIO_{3}^{-1} , CO_{3}^{-2}
 - $(3) SO_3^{-2}, NO_3^{-1}$
 - (4) ClO_{3}^{-} , SO_{3}^{-2}
- Which of the following pair is having planar 83. structure
 - (1) SF₄, XeF₄
- (2) H_3O^+ , SO_2 (4) XeF_3O_2
 - (3) BF₃, XeOF₂
- $(4) \text{ XeF}_4, \text{ NO}_3^-$
- 84. Ammonia is soluble in water but phosphine is insoluble because
 - (1) phsophine has higher molecular mass than ammonia
 - (2) ammonia is polar while phosphine is non polar
 - (3) Ammonia forms inter molecular H-bond with water but phosphine does not
 - (4) Ammonia is ionic while phosphine is covalent
- 85. Which of the following resist hydrolysis at room temperature
 - (1) PCl₃, SF₆
- (2) CCl₄, NO₂
- (3) PCl₅, XeF₆ (4) SF₆, CCl₄
- 86. Which of the following is polar
 - (1) p-dichlorobenzene
 - (2) trans-1-chloropropene
 - (3) boron tri fluoride
 - (4) xenon tetra fluoride
- 87. Which molecule / ion out of the following does not contain unpaired electrons?
 - $(1) N_2^+$
- $(2) O_{2}$
- $(3) O_{2}^{2-}$
- $(4) B_{2}$

- **88.** Which of following molecule is having shortest bond length
 - (1) O_{2}^{+}
 - $(2) O_{2}^{2}$
 - (3) O_{2}
 - (4) All have same bond length
- **89.** Which of the following attraction is strongest?

- $(4) \quad \boxed{\text{Cl}} \quad \boxed{\text{H}_2\text{O}}$
- **90.** How many sp^2 and sp-hybridised carbon atoms are present respectively in the following compound?

- (1) 4, 2
- (2) 6, 0
- (3) 3, 3
- (4) 5, 1
- **91.** Phosphorus pentachloride in the solid exists as:
 - (1) PCl₅
- $(2) PCl_{4}^{+}Cl^{-}$
- $(3) PCl_4^+PCl_6^-$
- (4) PCl₅·Cl₂
- **92.** Least stable hydride is:
 - (1) stannane
- (2) silane
- (3) plumbane
- (4) germane
- **93.** Solid NaCl is a bad conductor of electricity because:
 - (1) In solid NaCl there are no ions
 - (2) Solid NaCl is convalent
 - (3) In solid NaCl there is no mobility of ions
 - (4) In solid NaCl there are no electrons
- **94.** Which of the following halides is inert towards hydrolysis at room temperature?
 - (1) SiCl₄
- (2) PCl₃
- (3) NCl₃
- (4) NF,

95. The correct order of dipole moment is:

- (1) $CH_4 < NF_3 < NH_3 < H_2O$
- (2) $NF_3 < CH_4 < NH_3 < H_5O$
- (3) $NH_3 < NF_3 < CH_4 < H_2O$
- $(4) H_2O < NH_3 < NF_3 < CH_4$

96. Which of the following is not a best representation of the H-bond?

- **97.** Which order are correct?
 - (I) Thermal stability:

(II) Basic nature:

(III) Solubility in water:

LiOH > NaOH > KOH > RbOH > CsOH

(IV) Melting point:

NaCl > KCl > RbCl > CsCl > LiCl

- (1) (I), (IV)
- (2) (I), (II) and (IV)
- (3) (II), (III)
- (4) All correct
- **98.** In which of the following diatomic molecule, bond dissociation energy is maximum?
 - (1) H,
- (2) F_{2}
- (3) Cl₂
- (4) L
- **99.** Which of of the following carbonate is maximum stable to heat?
 - (1) CaCO₃
- (2) Li₂CO₃
- (3) Na₂CO₃
- (4) BaCO₃

- 100. The most stable structure of NO is
 - (1) $\dot{N} = 0$:
- (2) $\ddot{N} = \ddot{O}$
- (3) !N = Q!
- (4) : N = 0:
- **101.** What is/are true about CO₂ and SO₂?
 - (1) Both turn acidified K₂Cr₂O₇ solution green
 - (2) Both turn lime water milky
 - (3) Both are oxidising agents not the reducing agents
 - (4) All of these
- **102.** Which of the following is most stable?
 - (1) Na,N
- (2) Li₂N
- (3) Rb₂N
- (4) K₂N
- 103. Consider the following statements
 - I. PCl₃ on hydrolysis in the presence of moisture gives fumes of HCl.
 - II. PCl_5 exists as $[PCl_4]^{(-)}$ $[PCl_6]^{(+)}$ in solid state.
 - III. All the five bonds in PCl₅ molecule are equivalent.

Choose the correct statement(s):

- (1) II & III
- (2) I, II & III
- (3) Only I
- (4) I & II
- 104. According to Fajan's Rule, ionic character increases for:
 - (1) Small cation and small charge on cation
 - (2) Large cation and small anion
 - (3) Small cation and large anion
 - (4) Large anion and small charge on anion
- 105. Which molecule/ion out of the following does not contain unpaired electrons?
 - $(1) N_2^+$
- $(2) O_{2}$
- $(3) O_{2}^{2}$
- $(4) B_{2}$
- 106. In which of the following molecule/ion all the bonds are not equal?
 - (1) XeF₄
- (2) BF_{A}^{-}
- $(3) C_{2}H_{4}$
- (4) SiF₄

Para.: The electronic configurations of three elements, A, B and C are given below. Answer the questions 187-190 on the basis of these configurations.

- A $1s^2 2s^2 2p^6$
- B $1s^2 2s^2 2p^6 3s^2 3p^3$
- C $1s^2 2s^2 2p^6 3s^2 3p^5$
- 107. Stable form of A may be represented by the formula
 - (1) A
- (2) A_{2}
- $(3) A_2$
- 108. Stable form of C may be represented by the formula
 - (1) C
- (2) C₂
- (3) C_{2}
- $(4) C_4$
- 109. The molecular formula of the compound formed from B and C will be
 - (1) BC
- (2) B₂C
- (3) BC, (4) BC,
- 110. The bond between B and C will be
 - (1) ionic
- (2) covalent
- (3) hydrogen
- (4) coordinate.
- 111. Which of the following order of energies of molecular orbitals of N₂ is correct?
 - (1) $(\pi 2p_y) < (\sigma 2p_z) < (\pi^* 2p_y) \approx (\pi^* 2p_y)$
 - (2) $(\pi 2p_y) > (\sigma 2p_z) > (\pi^* 2p_y) \approx (\pi^* 2p_y)$
 - (3) $(\pi 2p_y) < (\sigma 2p_z) > (\pi^* 2p_y) \approx (\pi^* 2p_y)$
 - $(4) (\pi 2p_y) > (\sigma 2p_z) < (\pi^* 2p_y) \approx (\pi^* 2p_y)$
- 112. Formation of PH₄⁺ is difficult as compared to NH₄⁺ because :-
 - (1) Lone Pair of Phosphorus is optically inert
 - (2) Lone Pair of phosphorus resides in almost pure p - orbital
 - (3) Lone pair of phosphorus resides in sp³ orbital
 - (4) Lone pair of phosphorus resides in almost pure s - orbital
- **113.** The incorrect order of solubility in water :-
 - (1) $Ca(OH)_2 < Sr(OH)_2 < Ba(OH)_2$
 - (2) $\text{Li}_2\text{CO}_3 < \text{Na}_2\text{CO}_3 < \text{K}_2\text{CO}_3$
 - (3) AgF<AgCl<AgBr
 - $(4) BaSO_4 < MgSO_4$

114. Which of the following statement is incorrect?

- (1) In O_2^- , O_2^+ , the magnetic behavior is not changed
- (2) In N_2^+ , N_2^- , the magnetic moment remains unchanged
- (3) If z-axis is the overlapping axis, the P_x orbital of one atom and dxy orbital of another atom result antibonding M.O.
- (4) None of these
- 115. Which of the following is planar in monomer as well as in dimer form?
 - (1) AlCl₃ (2) ICl₃
- (3) BH₂
- (4) All
- 116. Which statement is correct in the following:
 - (1) $NH_3 > NF_3$: bond angle
 - (2) $NH_3 > NF_3$: reactivity towards lewis acid
 - (3) $NH_3 > NF_3$: Dipole moment
 - (4) All are correct
- 117. The species having no. $p\pi$ - $p\pi$ bond but has bond order equal to that of O₂:-
 - (1) XeO₃
- (2) ClO₂
- (3) PO₄³⁻
- $(4) SO_4^{2-}$
- 118. Which has a giant covalent structure?
 - (1) PbO₂
- (2) SiO₂
- (3) NaCl
- (4) AlCl₃
- **119.** A molecule which cannot exist theoretically is:
 - (1) SF_4
- (2) OF_2 (3) OF_4
- $(4) O_2F_2$
- **120.** Select the isomers given below, which have non-zero dipole moment?

(1)
$$C = C$$
 $C = C$
 $C = C$

(2)
$$\overset{\text{H}}{\underset{\text{Cl}}{}} C = C \overset{\text{Cl}}{\underset{\text{H}}{}}$$

- (3) Cl C = C (4) All of these
- **121.** Select the correct relation:
 - (1) $\mu_{\text{CH},\text{OH}} = \mu_{\text{CH},\text{SH}}$
- (2) $\mu_{\text{CH}_3\text{OH}} > \mu_{\text{CH}_3\text{SH}}$
- (3) $\mu_{\text{CH}_2\text{OH}} < \mu_{\text{CH}_2\text{SH}}$
- (4) can't compare

- **122.** The correct order of decreasing polarisability of ions is:
 - (1) $Cl^- > Br^- > I^- > F^-$
 - (2) $F^- > I^- > Br^- > Cl^-$
 - (3) $I^- > Br^- > Cl^- > F^-$
 - (4) $F^- > Cl^- > Br^- > I^-$
- 123. Among the following which species has same number σ and π -bonds?
 - $(1) C_2H_6$
- (2) $C_2(CN)_4$
- (3) C_2H_4
- (4) HC≡CH
- **124.** In which of the following pairs, the two species are isostructural?
 - (1) SO_3^{2-} and NO_3^{-}
 - (2) BF₃ and NF₃
 - (3) BrO₃ and XeO₃
 - (4) SF₄ and XeF₄
- **125.** The hybridisation of P in phosphate ion (PO_4^{3-}) is the same as in:
 - (1) I in ICI₄
- (2) S in SO₃
- (3) N in NO_3^-
- (4) S in SO_3^{2-}
- **126.** In POCl₃ compound. P shows which multiple bond:
 - (1) $p\pi-p\pi$
- (2) $d\pi d\pi$
- (3) No π bond
- (4) $p\pi d\pi$
- **127.** Intramolecular hydrogen bonding is found in:
 - (1) Salicylaldehyde
- (2) Water
- (3) Acetaldehyde
- (4) Phenol
- 128. Two ice cubes are pressed over each other and unite to form one cube. Which force is responsible for holding them together?
 - (1) van der Waals' forces
 - (2) Covalent attraction
 - (3) Hydrogen bond formation
 - (4) Dipole-dipole attraction

- **129.** The most suitable method of separation of mixture of ortho and para-nitrophenol in the ratio 1: 1 is:
 - (1) Distillation
- (2) Crystallisation
- (3) vaporisation
- (4) Colour spectrum
- **130.** The forces present in the crystals of naphthalene are:
 - (1) van der Waal's forces
 - (2) Electrostatic forces
 - (3) Hydrogen bonding
 - (4) Ionic bond
- 131. If d represents the bond length, then select the correct relation.
 - (1) $d_{N_2} = d_{N_2}$ and $d_{O_2} = d_{O_2}$
 - (2) $d_{N_2} < d_{N_2}$ and $d_{O_2} > d_{O_2}$
 - (3) $d_{N_2} < d_{N_2^+}$ and $d_{O_2} < d_{O_2^+}$
 - (4) $d_{N_2} > d_{N_2}$ and $d_{O_2} > d_{O_2}$
- **132.** Which of the following conducts electricity:
 - (1) Diamond
- (2) NaCl
- (3) KCl(fused)
- (4) BaSO₄
- 133. What hybridization is expected on the central atom of each of the following molecules?
 - (i) BeH₂
- (ii) CH₂Br₂
- (iii) PF
- (iv) BF₂
- (1) sp^2 , sp, sp^3 , sp^2 (2) sp, sp^3 , sp^3d , sp^2
- (3) sp, sp^3 , sp^3d^2 , sp^2 (4) sp^2 , sp, sp^2 , sp^3
- **134.** What is the value of 1 debye in SI units?
 - (1) 3.336×10^{-30} C.m. (2) 33.36×10^{-30} C.m.
 - (3) 333.6×10^{-30} C.m. (4) None of these
- 135. Which of the following molecule has a planar structure?
 - (1) O₂SF₂
- (2) OSF₂
- (3) XeF_4
- $(4) \text{ClO}_{4}^{-}$

- **136.** Which type of shape is found in SF₂ molecule?
 - (1) V-shaped
 - (2) Bipyramidal
 - (3) Linear
 - (4) Irregular tetrahedron
- 137. In XeF₂, XeF₄ and XeF₆ the hybridisation of central atom is?
 - (1) sp^3d^3 , sp^3d^2 , sp^3d
 - (2) sp^3d , sp^3d^3 , sp^3d^2
 - (3) sp^3 , $sp^3 sp^3$
 - $(4) \text{ sp}^3 \text{d}, \text{ sp}^3 \text{d}^2, \text{ sp}^3 \text{d}^3$
- 138. The correct sequence of decrease in bond angles of following hydrides is:
 - (1) $NH_3 > PH_3 > AsH_3 > SbH_3$
 - (2) $SbH_3 > AsH_2 > PH_3 > SbH_3$
 - (3) $SbH_3 > AsH_3 > PH_3 > NH_3$
 - (4) $PH_3 > NH_3 > AsH_3 > SbH_3$
- **139.** Which of the following is soluble in water?
 - (1) CS₂

- (2) C₂H₅OH
- (3) CCl₄
- (4) CHCl₃
- 140. Correct order is :-
 - (1) $SOF_2 > SOCl_2 > SOBr_2(B.A.) : (X \hat{S} X)$
 - (2) $SF_4 > XeF_4$ (Dipole moment)
 - (3) $BF_3 < BCl_3 < BBr_3$ (Bond angle)
 - (4) $PO_4^{3-} < SO_4^{2-} < ClO_4^-$ (Bond length)
- 141. Among the following, the molecule with highest dipole moment is:
 - (1) CH₃Cl
- (2) CH₂Cl₂
- (3) CHCl₃
- (4) CCl₄
- **142.** Which of the following is least volatile?
 - (1) HF
- (2) HCl
- (2) HBr
- (4) HI
- **143.** Which of the following has the shortest carboncarbon bond length?
 - $(1) C_6 H_6$
- (2) C_2H_6
- (3) C_2H_4
- $(4) C_2H_2$

- **144.** Carbon atoms in $C_2(CN)_4$ are:
 - (1) sp-hybridized
 - (2) Sp^2 -hybridized
 - (3) sp-and sp^2 -hybridized
 - (4) sp, sp^2 , and sp^3 -hybridized
- **145.** Two elements X and Y have following electronic configurations:

$$X = 1s^2$$
, $2s^2 2p^6$, $3s^2 3p^6$, $4s^2$ and

$$Y = 1s^2$$
, $2s^2 2p^6$, $3s^2 3p^5$

The compound formed by the combination of X and Y is:

- $(1) XY_2$
- $(2) X_5 Y_2$
- $(3)~X_2Y_5$
- (4) XY₅

146. Compare $F - \hat{I} - O$ and $F_{axial} - \hat{I} - F_{axial}$ bond angle in IOF_3 molecule:

(1)
$$F - \hat{I} - O > F_{axial} - \hat{I} - F_{axial}$$

- (2) F_{axial} — \hat{I} — $F_{axial} > F$ — \hat{I} —O
- (3) $F_{axial} \hat{I} F_{axial} = F \hat{I} O$
- (4) None of these
- **147.** How many bondings pairs and lone pairs surround the central atom in the I_3^- ion?

В	Sonding pairs	Lone pairs					
(1)	2	2					
(2)	2	3					
(3)	3	2					
(4)	4	3					

CHEMICAL BONDING

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	2	1	3	1	1	1	4	4	4	3	1	2	3	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	3	2	1	1	1	3	2	4	4	3	4	2	3
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	3	4	2	1	4	1	4	4	1	3	2	3	4	4	2
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	2	2	3	2	3	3	2	1	3	4	3	3	2	4
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	1	2	4	1	1	2	4	4	2	2	2	4	2	1	4
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	4	1	2	3	3	3	4	4	3	4	2	3	1	4	2
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
Ans.	3	3	3	4	1	3	1	1	3	3	2	2	3	2	3
Que.	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	3	1	2	4	2	1	4	3	3	2	4	1	2	3	1
Que.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135
Ans.	2	3	2	3	4	4	1	3	1	1	2	3	3	1	3
Que.	136	137	138	139	140	141	142	143	144	145	146	147			
Ans.	1	4	1	2	2	1	1	4	3	1	2	2			