EXERCISE

- The order of reactivity of alkyl halides in Wurtz 1. reaction is
 - (1) R-I > R-Br > R-Cl (2) R-I < R-Br < R-Cl
 - (3) R-Br > R-I < R-CI (4) R-I > R-CI > R-Br
- 2. Kolbe's electrolysis of a mixture of pot. Propanoate and pot. 3-Methylbutanoate gives
 - (1) Butane and isobutane
 - (2) Butane and 2.5-dimethylhexane
 - (3) Butane, 2.5-dimethylhexane and isohexane
 - (4) Butane and isohexane
- 3. The Corey-House alkane synthesis is carried out by treating an alkyl halide with
 - (1) Lithium metal
 - (2) Copper metal
 - (3) Lithium metal followed by reaction with cuprous iodide and then treating the product with an alkul halide
 - (4) Cuprous iodide followed by reaction with alkyl halide
- 4. Which of the following compound is not suitable to obtain from wurtz reaction?
 - (1) ethane
- (2) butane
- (3) isobutane
- (4) hexane
- 5. When ethyl chloride and n-propyl chloride undergoes wurtz reaction which is not obtained
 - (1) n-butane
- (2) n-pentane
- (3) n-hexane
- (4) isobutane

6.
$$CH_3$$
— CH $MgCl + CH_3 — C — OH \longrightarrow 'Q'; $CH_3$$

- What is 'Q'?
- (1) isobutane
- (2) isopropane
- (3) tert. butyl chloride (4) propane
- \triangleright O can not be converted to \bigcap by : 7.
 - (1) Red P + HI
 - (2) Wolf Kishner reduction
 - (3) Clemmensen reaction
 - (4) LiAlH

- 8. Which of the following reactions does not involve a C—C bond formation
 - (1) Hydrolysis of a Grignard reagent
 - (2) Combination of two alkyl free radicals
 - (3) Corev-House synthesis of alkanes
 - (4) RNa + R-Br \longrightarrow R-R + NaBr
- 9. Which of the following reactions of methane is incomplete combustion:-
 - (1) $2CH_4 + O_2 \xrightarrow{Cu/523K/100atm.} 2CH_3OH$
 - (2) $CH_4 + O_2 \xrightarrow{Mo_2O_3} HCHO + H_2O$
 - (3) $CH_4 + O_9 \longrightarrow C(s) + 2H_9O(\ell)$
 - (4) $CH_4 + 2O_2 \longrightarrow CO_2(g) + 2H_2O(\ell)$
- Which is correct about Wurtz reaction? 10.
 - (a) It can proceed through free radical mechanism
 - (b) Alkanes having even no. of C-atom can be prepared
 - (c) Sodium in Ammonia is used
 - (d) Sodium in dry ether is used
 - (1) c, d

(2) a. b. d

(3) b,c

(4) a. b. c. d

11.
$$C_2H_5-Cl \xrightarrow{Zn, H^+} (A)$$

$$Na \longrightarrow (B) \longleftarrow H_2/pt \longrightarrow (C) \text{ or } (D)$$

The incorrect statement is:

- (1) (A) is C_0H_0
- (2) (C) can be 1-butene
- (3) (A) and (B) are alkane (4) (D) is ethene
- Arrange the following in their boiling points. **12**.
 - (i) n-butane
- (ii) iso-butane
- (iii) n-pentane
- (iv) iso-pentane
- (v) neopentane
- (1) iii > i > ii > iv > v
- (2) v > iv > ii > i > iii
- (3) iii > iv > v > i > ii
- (4) ii > i > v > iv > iii
- For CH_3 -C-ONa $\xrightarrow{Electrolysis}$ (A) alkane **13**.

Which is incorrect?

- (1) A is ethane
- (2) (A) is formed at anode
- (3) CO₂ evolves at cathode
- (4) pH near cathode increases during the process

- Ozonolysis of 3-Methyl-1-butene gives a mixture of
 - (1) Propanal and ethanal
 - (2) Propanone and ethanal
 - (3) 2-Methylpropanal and methanal
 - (4) Butanone and methanal
- 15. Oxidation of isobutylene with acidic potassium permanganate gives
 - (1) Acetone + CO₂
- (2) Acetic acid
- (3) Acetic acid + CO₂ (4) Acetic acid + acetone
- $CH_3CH_2CH_2Br \xrightarrow{\text{alc.KOH}} A \xrightarrow{\text{(i)O_3}} B + C$ 16.

In the above reaction A, B and C are given by the set

- (1) Propylene, acetone, formaldehyde
- (2) Propene, ethanal, methanal
- (3) Propyne, acetaldehyde, formaldehyde
- (4) Propylene, propionaldehyde, formaldehyde
- **17**. Which of the following alkenes on ozonolysis give a mixture of ketones only?

 - (a) CH_3 -CH=CH- CH_3 (b) CH_3 -CH-CH= CH_2 CH_3 (c) CH_3 CH_3 CH_3 CH_3
- (1) a and b
- (3) b and d
- (4) c and d
- **18**. Which reaction will not happen at room temperature:
 - (1) $CH_2 = CH_2 \xrightarrow{H_2/Pt} CH_3 CH_3$
 - (2) $CH_2 = CH_2 \xrightarrow{H_2/Pd} CH_2 CH_3$
 - (3) $CH_2 = CH_2 \xrightarrow{H_2/N_i} CH_3 CH_3$
 - (4) CH \equiv CH $\xrightarrow{\text{H}_2/\text{Pt}}$ CH₂-CH₃
- 19. Which of the following is not electrophilic addition reaction?
 - (1) Addition of H+/H₂O on alkene
 - (2) Addition of dihydrogen on alkenes
 - (3) Addition of halogen on alkenes
 - (4) Addition of hydrogen halides on alkenes
- **20.** $CH_3-CH=CH_2 \xrightarrow{HBr} CH_3-CH-CH_3$ (A) $CH_3-CH_2-CH_2-Br$
 - (a) The product A is major
 - (b) Formation of A follows markovnikov rule

- Carbocation formed in A is less stable than that formed in B
- (d) Formation of B follows markovnikov rule

The correct statements are:

(1) c, d

(2) a, b, c, d

(3) a, b

- (4) a. d
- 21. For the reaction

$$CH_{2}=CH_{2} \xrightarrow{CCl_{4}} (A) \xrightarrow{alc. KOH} (B)$$

$$\downarrow L$$

$$\downarrow L$$

$$\downarrow R$$

$$\downarrow C$$

The product (C) is:

- $(1) CH_2 = CH_2$
- (3) H–C≡C–H
- (4) CH₂—CH₃
- An alkene A on ozonolysis gives a mixture of ethanal and pentan-3-one. The IUPAC name of A is.
 - (1) 3-ethyl-3-pentene
 - (2) 3-ethylidene pentane
 - (3) 3-ethyl pent-2-ene
 - (4) 1,1-diethyl prop-1-ene
- 23. For the reaction:

$$\begin{array}{c|c} CH_3\text{-}CH\text{-}CH\text{=}CH_2 & \xrightarrow{HBr} \text{(A) (major)} \\ CH_3 & \xrightarrow{HBr} \text{(B) (major)} \end{array}$$

The incorrect statement is:

- (1) A and B are chain isomers
- (2) A and B are position isomers
- (3) A is 1-bromo-3-methyl butane
- (4) B is 2-bromo-2-methyl butane
- 24. For the reaction

$$H_3C$$
 $C=CH-CH_3$ O_3 (A) + (B) $Products$

- (1) One of the product only show positive tollens test
- (2) Both product shows positive tollen's test
- (3) Both product shows positive haloform test
- (4) Both 1 & 3 are correct

- **25.** Which of the following compound will not give a precipitate with Tollen's reagent
 - (1) ethyne
- (2) 1-butyne
- (3) 3-methyl -1-butyne
- (4) 1-pentene
- **26.** $B \leftarrow BH_3 / THF \atop H_2O_2 / OH$ $CH_3 C = CH \xrightarrow{H_3SO_4 / H_2SO_4} A$

A and B are

- (1) CH₃CH₂CHO, CH₃COCH₃
- (2) CH₃COCH₃, CH₃CH₉CHO
- (3) CH, COCH, both
- (4) CH₃COCH₃, CH₃CH₂CH₂OH
- 27. MeCH₂C \equiv CH $\xrightarrow{NH_3/NaNH_2}$ A $\xrightarrow{Et Br}$ B, A and B are
 - (1) $MeCH_{2}C \equiv CNa$, $MeCH_{2}C \equiv C Et$
 - (2) MeCH₂CH=CH₂, MeCH₂—CHEt—CH₃
 - (3) MeCH₂CH=CHNH₂, MeCH₂CH=CH-NHBr
 - (4) $MeCH_{2}C \equiv C NH_{2}$, $MeC \equiv C NH Br$
- **28.** $CH_3 \xrightarrow{Na} \text{product will be :}$

$$(1) \begin{array}{|c|c|} \hline & CH_2 \\ \hline & H \end{array} \begin{array}{|c|c|} \hline & C \\ \hline & H \end{array}$$

$$(2) \begin{array}{c} CH_2 \\ H \end{array} C = C \begin{array}{c} H \\ CH_3 \end{array}$$

$$(4) \bigcap_{H} C = C \binom{CH_3}{H}$$

- **29.** To distinguish between propene and propyne, the reagent would be -
 - (1) Bromine
 - (2) Alkaline KMnO
 - (3) Ammonical silver nitrate
 - (4) Ozone
- **30.** The most suitable reagent to differentiate ethyne and ethene is:
 - (1) Br_2 in CCl_4
- (2) NaHCO₂
- (3) NaOH
- (4) NaNH_a

31. For the reaction :

$$CH_{3}-C=CH\xrightarrow{HBr}(A)$$

$$Hg^{2+}/H^{+}$$

$$333 \text{ K} (B)$$

Consider statements:-

- (a) Product A is CH_3 – CH_2 –CHBr
- Br (b) Product A is CH₃-C-CH₃ Br
- (c) Product B is CH_3 - CH_2 -CH=O
- (d) Product B is CH₃-C-CH₃

The correct statements are:

(1) b, d

- (2) a, c
- (3) only b
- (4) only a

32. A
$$\stackrel{Br_2}{\longleftarrow}$$
 $\stackrel{KMnO_4}{\bigcirc}$ B; A and

respectively are

- (1) o-bromo styrene, benzoic acid
- (2) p-bromostyrene, benzaldehyde
- (3) m-bromostyrene, benzaldehyde
- (4) Styrene dibromide, benzoic acid.
- **33.** The ozonolysis product of 1, 2-dimethyl benzene is/are:-

(1) Only
$$CH_3$$
— C — C — CH_3
 \parallel
 \parallel
 0
 O

(4)
$$CH_3C-CCH_3 + HC-CH + CH_3C-C-H$$

34. For the reaction:

$$\underbrace{CH_3CH_2-CH_2-Cl}_{AlCl_3} \rightarrow (A)$$

Correct statement is :-

- (1) A is n-propyl benzene
- (2) It is a friedel craft alkylation
- (3) A is iso propyl benzene
- (4) Both 2 & 3
- 35. For the reaction

- (1) A is not aromatic
- (2) B is aromatic
- (3) A is aromatic
- (4) B is hexachlorobenzene
- Correct reactivity order for EAR of following **36**. compounds is

$$\begin{array}{cccc} & & & & & CH_3 \\ Ph-CH=CH_2 & & Ph-C=CH-CH_3 \\ I & & II \\ Ph_2C=CH-CH_3 & & CH_2=CH-NO_2 \\ III & & IV \end{array}$$

- (1) IV > I > II > III
- (2) III > II > I > IV
- (3) II > III > I > IV
- (4) II > III > IV > I
- **37**. The intermediate during the addition of HCl to propene in the presence of peroxide is

 - (1) CH_3 CH CH_2 CI (2) CH_3 CH — CH_3
 - (3) CH₃—CH₂—CH₂ (4) CH₃ CHCH₃

38.
$$\langle O \rangle$$
—CH=CH—COOH + Br₂ \longrightarrow A

the number of chiral carbons in 'A' are

(1) 1

(2) 2

(3) 3

(4) 4

39.
$$CH_3$$
— CH = $CH_2 \xrightarrow{\text{dil}/H_2SO_4} A$

$$CH_3 \hspace{-0.1cm} -\hspace{-0.1cm} CH \hspace{-0.1cm} =\hspace{-0.1cm} CH_2 \hspace{-0.1cm} \xrightarrow{B_2H_6} \hspace{-0.1cm} \xrightarrow{H_2O_2} \hspace{-0.1cm} B$$

Wrong statement about the product is

- (1) A and B have the same functional group
- (2) A and B are position isomers.
- (3) A and B show chain isomerism
- (4) Mixed ether is the isomer of both A and B
- 40. Which of the following alkene is most reactive for hydration
 - (1) ethene
 - (2) propene
 - (3) 1-butene
 - (4) 2-methyl propene
- 41. The major product of the following reaction is

$$(1) \bigcirc -CH_2-CH_2-CH_2-OH$$

$$(3) \bigcirc \begin{matrix} OH \\ | \\ CH-CH_2-CH_3 \end{matrix}$$

(4)
$$HO \longrightarrow CH = CH - CH_3$$

42.
$$CH_3 \xrightarrow{A} CH_3$$
; Reagent 'A' is

- (1) BH₃,H₂O₂/OH
- (2) H₂O/H[⊕]
- (3) Hg(OCOCH₂)₂,H₂O/NaBH₄
- (4) Cl₂/aq. NaOH
- 43. Which of the following alkenes on hydration gives a tertiary alcohol
 - (1) 2-Butene
 - (2) Isobutylene
 - (3) Ethene
 - (4) α-Butylene

44. The predominant product formed when 3-methyl-2-pentene reacts with HOCl is

- (2) CH₃—CH₂CH—CH₃CH₃
- (3) $CH_3-CH_2-C-CH-CH_3$ CH_3
- 45. Propene on addition with HI, gives
 - (1) CH₃—CHI—CH₃ (2) CH₃—CH₉—CH₉I

 - (3) CH₂—CHI—CH₃I (4) None of the above
- 46. What is the main product of this reaction?

$$CH_3 - C \equiv CH \xrightarrow{HCI(g)}$$
 ?

- (1) $CH_3 C = CH_2$
- (2) CH₃ CH CH₂
- (3) CH₃ CH₂ CH
- (4) $CH_3 C CH_3$
- 47. 3-Phenyl propene on reaction with HBr gives (as a major product)
 - $(1) C_6 H_5 CH_9 CH (Br) CH_3$
 - (2) C₆H₅CH(Br)CH₂CH₃
 - (3) C₆H₅CH₉CH₉CH₉Br
 - $(4) C_{\epsilon}H_{\epsilon}CH(Br)CH = CH_{o}$
- Reaction of HBr with propene in the presence 48. of peroxide gives
 - (1) 3-bromo propane
- (2) Allyl bromide
- (3) n-propyl bromide
- (4) Isopropyl bromide

- → "product". The product is 49. Isobutylene -
 - (1) Isobutyl bromide
- (2) Tert. butyl bromide
- (3) Tert. butyl alcohol
- (4) isobutyl alcohol
- The nitrating agent for the nitration of alkanes is: 50.
 - (1) Conc. HNO₃
 - (2) Mixture of conc. HNO₃ and conc. H₂SO₄
 - (3) Acetyl nitrate
 - (4) HNO₂ vapours at high temperature
- 51. The chain propagating step is fastest in the reaction of an alkane with
 - (1) Fluorine free radical (2) Chlorine free radical
 - (3) Iodine free radical
- (4) Bromine free radical
- 52. In the nitration of propane, the product obtained in maximum yield is
 - (1) 1-nitropropane
- (2) 2-nitropropane
- (3) Nitroethane
- (4) Nitromethane
- 53. Only two isomeric monochloro derivatives are possible for (exclude stereo isomers)
 - (1) n-butane
- (2) 2, 4-dimethyl pentane
- (3) benzene
- (4) 2-methyl butane
- 54. What is the chief product obtained when n-butane is treated with bromine in the presence of light at 130℃?
 - $(1) CH_3 CH_9 CH_9 CH_9 Br$
 - (2) CH₃--CH₂--CH--Br | | CH₃
 - (3) CH₃-CH-CH₂-Br
 - (4) CH_3 — $\stackrel{|}{C}$ — CH_2 —Br
- **55**. The strongest deactivating effect on aromatic ring is
 - (1) –CH₂Cl
- (2) -OCH₂
- $(3) CH_3$
- (4) -CCl₂
- **56**. Which of the following is maximum reactive towards E.S.R. :-

Correct order of reactivity of following compound with an electrophile:-

(I)
$$p-CH_3-C_6H_4-CH_3$$

(II)
$$C_6H_5$$
— CH_3

(III)
$$p$$
— CH_3 — C_6H_4 — NO_2

$$(IV) p-O_2N-C_6H_4-NO_2$$

- (1) I > II > III > IV
- (2) II > I > IV > III
- (3) III > II > I > IV
- (4) IV > III > II > I
- **58**. Toluene is more reactive than benzene towards electrophilic reagents due to :-
 - (1) Inductive effect only
 - (2) Hyperconjugative effect only
 - (3) Both inductive as well as hyperconjugative effects
 - (4) Strong mesomeric effect
- **59**. Nitration of benzene is
 - (1) nucleophilic substitution
 - (2) nucleophilic addition
 - (3) electrophilic substitution
 - (4) electrophillic addition
- **60**. Consider the following compounds:

Correct order of their reactivity in electrophilic substitution reactions would be :-

- (1) I > II > III > IV
- (2) IV > III > II > I
- (3) III > II > I > IV
- (4) III > IV > I > II
- 61. The active species in the nitration of benzene is
 - $(1) NO_{2}^{+}$
- (2) HNO₃ (3) NO₃

- (4) NO₂

- **62**. The function of anhydrous AlCl₂ in the Friedel craft's reaction
 - (1) To absorb water
 - (2) To absorb HCl
 - (3) To produce electrophile
 - (4) To produce Nucleophile
- 63. In which of the following compound the electrophile attack on o- and p- positions:

$$(3) \bigcirc \bigcirc \bigcirc$$

64.
$$\bigcirc + CH_2 = CH_2 \xrightarrow{H^+} \bigcirc CH_2 - CH_3$$

Incorrect statement about this reaction

- (1) Benzene is substrate
- (2) Ethene is reagent
- (3) Reaction is EAR with respect to ethene
- (4) Reaction is NSR for benzene
- 65. For the reaction

$$\begin{array}{c}
CH_3Cl \\
\hline
AlCl_3
\end{array}$$
(A)
$$\begin{array}{c}
Cl_2 \\
\hline
FeCl_3
\end{array}$$
(B)
$$\begin{array}{c}
(B) \\
(major)
\end{array}$$

Product B is:

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	3	3	3	4	4	4	1	3	2	4	3	3	3	1
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	4	3	2	3	3	3	1	4	4	2	1	2	3	4
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	1	4	4	4	3	2	2	2	3	4	3	1	2	4	1
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	2	3	1	4	1	2	1	2	4	2	1	3	3	3
Que.	61	62	63	64	65										
Ans.	1	3	2	4	2]									