AREA UNDER THE CURVE- EXERCISE

1.	The area contained between the x-axis and one arc of the curve $y = \cos 9x$ is	11.	Area lying between the curve $y = \cos x$ the line $y = x + 1$ and the x-axis is :-					
2.	(1) $\frac{1}{3}$ (2) $\frac{2}{3}$ (3) $\frac{2}{7}$ (4) $\frac{2}{9}$ Area bounded by curve $y = xe^{ x }$ and lines $ x = 1$, $y = 0$ will be (1) 4 (2) 6 (3) 1 (4) 2	12.	(1) $\frac{1}{2}$ (2) $\frac{3}{2}$ (3) $\frac{5}{2}$ (4) None Area lying in the first quadrant between the curves $x^2 + y^2 = \pi^2$ and $y = \sin x$ is equal to :- (1) $\frac{(\pi^2 - 8)}{2}$ (2) $\frac{(\pi^3 - 8)}{3}$					
 4. 	Area bounded by x-axis, $x = 0$, $x = \frac{\pi}{2}$ and $f(x) = \{\sin x\}$ is (where{.} is fractional part function): (1) π (2) 2π (3) 3π (4) None Area of the region bounded by the curves $y = e^x$ $y = e^{-x}$ and the straight line $y = 2$ is	13.	(3) $\frac{(\pi^2 - 8)}{4}$ (4) $\frac{(\pi^3 - 8)}{4}$ The area enclosed between the curves					
5.	(1) $\ell n \frac{4}{e}$ (2) $2\ell n \frac{4}{e}$ (3) $4\ell n \frac{4}{e}$ (4) None Area enclosed by the curves $y = \ell n x$; $y = \ell n x $; $y = \ell n x $; $y = \ell n x $ and $y = \ell n x $ is equal to (1) 2		$y = \log_e(x + e) \ x = \log_e\left(\frac{1}{y}\right)$ and the x-axis is equal to :-					
6.	(2) 4 (3) 8 (4) cannot be determined The area enclosed by x + y = 1 and the axis of x is :-	14.	(1) 2e (2) 2 (3) $\frac{2}{e}$ (4) None Area bounded by the parabola $y^2 = 2x$ and the ordinates $x = 1$, $x = 4$ is-					
7.	(1) 1		(1) $\frac{4\sqrt{2}}{3}$ sq. units (2) $\frac{28\sqrt{2}}{3}$ sq. units (3) $\frac{56}{3}$ sq. units (4) None of these					
0	$y = \sqrt{4 - x^2}$ and $\sqrt{3} (x^2 + y^2) = 4xy$ is equal to :- (1) $\frac{\pi}{2}$ (2) $\frac{5\pi}{2}$ (3) 3π (4) $\frac{\pi}{4}$	15.	The area bounded by the curve $y = \frac{1}{\cos^2 x}$, coordinates axes and $x = \pi/4$ is-					
8.9.	The limit of the area under the curve $y = e^{-x}$ from $x = 0$ to $x = h$ as $h \to \infty$ is (1) 2 (2) e (3) $1/e$ (4) 1 Let $y = g(x)$ be the inverse of a bijective mapping $f : R \to R$, $f(x) = 3x^3 + 2x$ the area bounded by the graph of $g(x)$, the x-axis and the ordinate at $x = 5$ is	16. 17.	$y = a \sin x \text{ and } x\text{-axis is-}$ (1) a (2) $2a^2$ (3) 0 (4) $2a$ The area of the figure bounded by $y = \sin x$,					
10.	(1) $\frac{5}{4}$ (2) $\frac{7}{4}$ (3) $\frac{9}{4}$ (4) $\frac{13}{4}$ The area of the shorter region bounded by		$y = \cos x & y \text{ axis, in the first quadrant is}$ $(1) \left(\sqrt{2} - 1\right) \qquad (2) \sqrt{3} + 1$ $(3) 2\left(\sqrt{3} - 1\right) \qquad (4) \text{ None of these}$					
	$ y = 4 - x^2$ and $ y = 3x$ is given by $\left(3K + \frac{1}{3}\right)$ sq-unit where K is equal to:- (1) 1 (2) 2 (3) 3 (4) $3\frac{1}{3}$	18.	The area bounded by the curve $y=x\sin x^2$, x–axis and $x=0$ and $x=\sqrt{\frac{\pi}{2}}$ is					
	3		(1) $1/2$ (2) $1/\sqrt{2}$ (3) $1/4$ (4) $\pi/2$					

- The area of the smaller portion between the circle $x^2 + y^2 = 9$ and the line x = 1 is-
 - (1) $9 \sec^{-1} 3 \sqrt{8}$
- (2) $9 \operatorname{cosec}^{-1} 3 \sqrt{8}$
- (3) $\sec^{-1}3 \sqrt{8}$
- (4) None of these
- **20.** The area of the region bounded by $x^2 + y^2 2x \le 0$, $x + y \le 1; y \ge 0$ is-

- (1) $\frac{\pi}{8}$ (2) $\frac{\pi}{8} + \frac{1}{2}$ (3) $\frac{\pi}{4} \frac{1}{2}$ (4) $\frac{\pi}{4} + \frac{1}{2}$
- The area between the curves $y = x^2$ and $y = \frac{2}{1 + y^2}$ is-

 - (1) $\pi \frac{1}{3}$ (2) $\pi 2$ (3) $\pi \frac{2}{3}$ (4) $\pi + \frac{2}{3}$
- 22. Let f(x) be a continuous function such that the area bounded by the curve y = f(x), the x-axis and the two ordinates x = 0 and

$$x = a$$
 is $\frac{a^2}{2} + \frac{a}{2}\sin a + \frac{\pi}{2}\cos a$. Then $f\left(\frac{\pi}{2}\right)$ is-

- (1) $\frac{1}{2}$ (2) $\frac{\pi^2}{8} + \frac{\pi}{4}$ (3) $\frac{\pi+1}{2}$ (4) $\frac{\pi}{2}$
- **23**. The area bounded in the first quadrant by the normal at (1, 2) on the curve $y^2 = 4 \times x$, x-axis & the curve is given by:

- (1) $\frac{10}{3}$ (2) $\frac{7}{3}$ (3) $\frac{4}{3}$ (4) $\frac{9}{2}$
- 24. The area of the region(s) enclosed by the curves

$$y = x^2$$
 and $y = \sqrt{|x|}$ is

- (1) 1/3 (2) 2/3 (3) 1/6

- (4) 1

- **25**. Area enclosed by the graph of the function $y = h^2x - 1$ lying in the 4th quadrant is
 - $(1)^{\frac{2}{-}}$

- (3) $2\left(e + \frac{1}{e}\right)$ (4) $4\left(e \frac{1}{e}\right)$
- 26. The area bounded by the curve y = f(x)(where $f(x) \ge 0$), the co-ordinate axes & the line

 $x = x_1$ is given by x_1 . e^{x_1} . Therefore f(x) equals:

(1) e^{x}

- (2) $x e^{x}$
- (3) $xe^{x} e^{x}$
- $(4) \times e^{x} + e^{x}$
- 27. The slope of the tangent to a curve y = f(x) at (x, f(x)) is 2x + 1. If the curve passes through the point (1, 2) then the area of the region bounded by the curve, the x-axis and the line x = 1 is
 - (1) $\frac{5}{6}$ (2) $\frac{6}{5}$ (3) $\frac{1}{6}$
- (4) 1
- 28. The area bounded by the curves $y = x (x - 3)^2$ and y = x is (in sq. units):
 - (1) 28
- (2) 32
- (3) 4
- 29. The area bounded by the curve $y = x e^{-x}$; xy = 0and x = c where c is the x-coordinate of the curve's inflection point, is
 - (1) $1 3e^{-2}$
- (2) $1 2e^{-2}$
- (3) $1 e^{-2}$
- 30. If the area bounded between x-axis and the graph of $y = 6x - 3x^2$ between the ordinates x = 1 and x = a is 19 square units then 'a' can take the value (1) 4 or - 2
 - (2) two values are in (2, 3) and one in (-1, 0)
 - (3) two values one in (3,4) and one in (-2,-1)
 - (4) none of these

				ANSWER KEY			Exercise-I			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	4	4	4	2	2	1	4	4	4	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	2	4	2	2	1	4	1	1	1	1
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	3	1	1	4	2	2	4	1	1	3