EXERCISE

- 1. Which of the following species is an electrophile
 - (1) RNH₂
 - (2) SO₃
- (4) ROH
- 2. Which of the following acts as a nucleophile?
 - (1) NO.

 - (2) :CCl₂ (3) ${}^{\circ}_{NH_0}$

 $(3) NO_{2}^{\Theta}$

- (4) •CH₂
- 3. Which of the following contains only three pair of electrons:
 - (1) Carbanion
- (2) Carbocation
- (3) Carbon free radical
- (4) None
- 4. Carbanion is a :-
 - (1) Base
- (2) Nucleophile
- (3) Both the above
- (4) None
- 5. In which structure carbon does not act as a electrophile.
 - (1) CH₂-CH₂-Cl
- (2) CH₂-CO-CH₃
- (4) CH₂-CN
- Wrong statement regarding methyl carbonium ion 6. (ČH₂).
 - (1) It is sp² hybridised
 - (2) Vacant orbital is sp²hybridised
 - (3) Vacant orbital is perpendicular to molecular planar and in pure p-orbital
 - (4) It is electrophile with sextet of electron
- $_{\text{CH}_{\circ}}^{\Theta}$ is less stable than :-7.

 - (1) CH_3 — CH_2 (2) CH_3 —CH— CH_3

 - (3) CH_2 — NO_2 (4) CH_3 —CH— C_2H_5
- 8. Decreasing order of -I effect of the triad [-NO₂,
 - $-\stackrel{\oplus}{N}H_{\circ}$, -CN] is :-
 - $(1) \overset{\oplus}{N} H_2 > -NO_2 > -CN$
 - (2) $-NH_3 > -CN > NO_2$
 - (3) $-\text{CN} > -\text{NO}_2 > -\text{N}_3$
 - $(4) -NO_2 > -CN > -\stackrel{\oplus}{N}H_3$

- 9. Most stable carbanion is :-
 - (1) HC≡^Q
- (2) H₂C=CH
- (3) CH_3 CH_3 CH_2 (4) CH_3 CH_3 CH_3
- 10. The correct order of stability of given carbanions will

НС≡Ё CH,-CH, CH,=CH (III)(II)(I)

- (1) I > II > III
- (2) III > II > I
- (3) I > III > II
- (4) II > I > III
- 11. Which is most basic among the following:-
 - (1) CH₃NH₂
- (2) CH₃CH₂NH₂

(3) NH_3

- (4) (CH₂)₂CHNH₂
- 12. Which of the following has maximum pK :-
 - (1) CH₂FCOOH
- (2) CH_oClCOOH
- (3) CH, COOH
- (4) HCOOH
- 13. Which of the following is most acidic?
 - (1) Methoxy acetic acid (2) Acetic acid
 - (3) Chloro acetic acid
- (4) Trifluoroacetic acid
- 14. Which of the following show + I-effect :-
 - (1) OH

- $(2) OCH_3$ $(3) CH_3$ (4) CI
- Among the following the most highly ionised in water is: 15.
 - (1) CH₂CH₂CHClCOOH
 - (2) CH₃CH₂CCl₂COOH
 - (3) CH₃CHClCH₂COOH
 - (4) CH₂CICH₂CH₂COOH
- The strongest acid amongst the following compounds is?
 - (1) CH₃CH₂CH(Cl)CO₂H
 - (2) CICH₂CH₂CH₂COOH
 - (3) CH₃COOH
 - (4) HCOOH
- 17. Which of the following acids is stronger than acetic acid:-
 - (1) Propanoic acid
- (2) Formic acid
- (3) Butvric acid
- (4) Iso butyric acid

Which of the following acids have the lowest pK value :-

- (2) Cl—CH₂—CH₂—COOH
- (3) CCl₃COOH
- (4) CHCl₂COOH
- 19. In which σ bond, the inductive effect is minimum?

$$C \hspace{-0.1cm} -\hspace{-0.1cm} C \hspace{-0.1cm} I$$

- (1)a
- (2) b
- (3)c
- (4) d
- 20. Arrange the following in the acidic strength order:
 - (a) NO, CH, COOH
- (b) NC-CH₂COOH
- (c) CCl₃COOH
- (d) CHCl, COOH
- (1) a > b > c > d
- (2) c > d > a > b
- (3) b > a > d > c
- (4) c > a > b > d
- 21. Most stable carbocation is :-

- **22**. Most acidic compound is :-

 - ·CO₂H

 - $(4) O_{2}N$
- **23**. Which resonating structure of vinyl chloride is least stable:-
 - (1) $CH_2 = CH CI$:
 - (2) $\stackrel{\bigcirc}{\text{CH}}_{2}$ —CH= $\stackrel{\oplus}{\text{Cl}}$
 - (3) CH₂—CH—Cl
 - (4) All have equal stability

24. The stabilization due to resonance is maximum in

- 25. In which of the following compounds carbon-chlorine bond distance is minimum:-
 - (1) CH₃—Cl
 - $(2) C_6 H_5 CH_2 CI$
 - (3) CH₂ = CH CI
 - $(4) CH_2 = CH CH_2 CI$
- **26**. Consider the following carbocations

(a)
$$CH_3O$$
 \bigcirc $\stackrel{\oplus}{C}H_2$ (b) \bigcirc $\stackrel{\oplus}{C}H_2$

(c)
$$CH_3 \longrightarrow CH_2$$
 (d) $CH_3 \longrightarrow CH_2$

The relative stabilities of these carbocations are such that :-

- (1) d < b < c < a
- (2) b < d < c < a
- (3) d < b < a < c (4) b < d < a < c
- 27. Arrange in decreasing order of basic strength:

- (1) I > II > III > IV
- (2) II > III > I > IV
- (3) IV > I > III > II
- (4) IV > I > II > III
- 28. The most stable carbanion among the following is

29. Which of the following is most stable carbocation:-

- (4) $CH_2 = CH \overset{\oplus}{C}H_2$
- **30.** The oxygen atom in phenol
 - (1) exhibits only inductive effect
 - (2) exhibits only resonance effect
 - (3) has more dominating resonance effect than inductive effect
 - (4) has more dominating inductive effect than resonance effect
- **31**. Which is incorrect stability order :-

(1)
$$CH_2 = CH - \overset{\oplus}{C}H_2 > CH_3 - \overset{\oplus}{C}H - CH_3$$

(2)
$$CH_2 = \overset{\oplus}{CH} < CH_3 - \overset{\oplus}{CH_2}$$

(3)
$$CH_3 - CH_2 - CH_2 > CH_3 - CH - CH_3$$

(4)
$$CH_3 - \overset{\oplus}{C}H_2 > CH_3O - \overset{\oplus}{C}H_2$$

- **32**. Mesomeric effect is due to :-
 - (1) Delocalization of σ es
 - (2) Delocalization of π es
 - (3) Migration of H atom
 - (4) Migration of proton
- **33.** Among the following the pKa is minimum for :-
 - (1) C_6H_5OH
- (2) HCOOH
- (3) C_2H_5OH
- (4) CH₃C≡CH
- **34.** Among the following the aromatic compound is –

35. Which is aromatic compound among the following

(4) All the above

36. Select the correct option for stability of following carbanions :

- (1) I > II > III
- (2) II > I > III
- (3) III > II > I
- (4) II > III > I
- **37.** The non aromatic compound among the following is:-

- **38.** The correct order of acidic strength of the following compounds is :-
 - A. Acetylene
- B. Ammonia
- C. Phenol
- D. Carbonic acid
- (1) C > B > A > D
- (2) D > C > A > B
- (3) B > D > A > C
- (4) A > B > D > C
- **39**. Which one of the following compounds is most acidic:-

$$(1) \bigcirc \bigcap_{NO}^{OH}$$

- (4) CICH₂CH₂OH
- **40.** Which of the following is most acidic :-
 - (1) phenol
- (2) benzyl alcohol
- (3) m-chloro phenol
- (4) cyclohexanol
- 41. Which of the following is the strongest base :-
- (2) O-NH-CH₃
- (3) O NH₂
- $(4) \bigcirc CH_2 NH_2$
- **42.** The least carbon-chlorine bond length present in
 - (1) Methyl chloride
- (2) Allyl chloride
- (3) Ethul chloride
- (4) Vinul chloride

- **43.** Which one of the following resonating structures of 1–methoxv–1,3–butadiene is least stable:
 - (1) $\overset{\circ}{\text{CH}}_2$ -CH=CH-CH= $\overset{\circ}{\text{O}}$ -CH₃
 - (2) $CH_2 = CH \overset{\Theta}{C}H CH = \overset{\Theta}{O} CH_3$
 - (3) CH₂−CH−CH=CH−O−CH₃
 - (4) CH₂=CH-CH=CH-O-CH₃
- **44.** Four structures are given in options (a) to (d). Examine them and select the aromatic structures.

- (1) a and d
- (2) b and c
- (3) a and b
- (4) a and c
- **45.** Order of acidic strength of the following compound will be:

- (D) COOH
- (1) C > D > B > A
- (2) D > C > B > A
- (3) A > B > C > D
- (4) B > A > C > D
- **46.** Phenol is less acidic than
 - (1) Ethanol
- (2) o-Nitrophenol
- (3) o-Methylphenol
- (4) o-Methoxyphenol
- **47.** Temporary electron displacement effect in a molecule that occurs when a reagent approaches to attack if, is called as -
 - (1) Inductive effect
- (2) Resonance effect
- (3) Mesomeric effect
- (4) Polarisability effect

- **48.** Which statement is incorrect.
 - (1) the energy of actual structure of the molecule is lower than that of any canonical structure
 - (2) The energy difference between actual structure and least energy resonance structure is called as resonance energy
 - (3) More number of resonating structure, more resonance
 - (4) In equivalent resonance structure of acetate ion of C=O bond length are unequal
- **49.** Increasing order of basic strength is :-

(1) Ph – NH₂ >
$$\bigcirc$$
 NH₂ NH₂ \bigcirc NH₂ \bigcirc NH₂ NO₂

- **50.** Phenol are ortho para directing due to:
 - (1) —OH groups shows +M & -I
 - (2)—OH does not show hinderance
 - (3) The resonance effect increases the e⁻ density at o & p position
 - (4) The I-effect decreases the e⁻ density at meta position
- **51.** Which of the following is not aromatic?

52. Arrange the following in their acidic strength order

- (1) a > b > c
- (2) c > a > b
- (3) b > a > c
- (4) a > c > b
- **53**. Which of the following compounds exhibits hyperconjugation:
 - (1) Phenol
- (2) Ethyne
- (3) Ethanol
- (4) Propene
- **54.** Which of the following is least stable :-
 - (1) CH₃-CH-CH₃
- (2) CH₂-CH₂-CH₂
- (3) $CH_3 \overset{\oplus}{C} CH_3$ (4) $CH_3 \overset{\Box}{C} \overset{\Box}{C} H C_6 H_5$
- **55**. Which of the following is most stable alkene :-

(1)
$$\frac{H}{H}C = C < \frac{H}{H}$$

(2)
$$CH_3 C = C H$$

$$(3) \quad H_5C_2 = C H$$

(4)
$$CH_3$$
 CH $C = C$ H

Which of the following will lead to maximum 56. enolisation:-

- **57**. Urea $H_2N-C-NH_2$ molecule exhibits (isomerism):-
 - (1) Chain
- (2) Position
- (3) Geometrical
- (4) Tautomerism
- 58. Tautomerism is not observed in :-

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	3	2	3	3	2	3	1	1	2	4	3	4	3	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	3	4	2	3	4	3	4	3	1	3	4	1	3
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	4	2	2	3	4	2	1	2	1	3	4	4	3	4	1
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58		
Ans.	2	4	4	2	3	4	2	4	2	2	4	4	4		