THERMODYNAMICS & THERMOCHEMISTRY

EXERCISE-I

1. What is ΔU for the process described by figure. Heat supplied during

the process q = 200 kJ.

- (2) -50 kJ
- (3) -150 kJ
- (4) + 150 kJ

2. What is the change in internal energy when a gas is compressed from 377 ml of 177 ml under a constant pressure of 1520 torr, while at the same time being cooled by removing 124 J heat?

[Take : (1L atm) = 100 J]

$$(1) -24 J$$

$$(2) - 84 J$$

$$(3) - 164 J$$

$$(4) - 248 J$$

3. For a reaction, $2X(s) + 2Y(s) \rightarrow 2C(\ell) + D(g)$ The q_p at 27° C is -28 KCal. mol⁻¹. The q_v is ------K. Cal. mol⁻¹:-

$$(1) - 27.4$$

$$(2) + 27.4$$

$$(3) - 28.6$$

4. Ethyl chloride (C₂H₅Cl), is prepared by reaction of ethylene with hydrogen chloride:

 $C_2H_4(g) + HCl(g) \longrightarrow C_2H_5Cl(g)$

$$\Delta H = -72.3 \text{ kJ/mol}$$

What is the value of ΔU (in kJ), if 70 g of ethylene and 73 g of HCl are allowed to react at 300 K.

- (1) -69.8
- (2) -180.75
- (3) -174.5
- (4) -139.6
- **5.** One mole of an ideal monoatomic gas expanded irreversibly in two stage expansion.

State-1 (8.0 bar, 4.0 litre, 300 K)

State-2 (2.0 bar, 16litre, 300 K)

State-3 (1.0 bar, 32 litre, 300 K)

Total heat absorbed by the gas in the process is

- (1) 116J
- (2) 40 J
- (3) 4000 J
- (4) None of these
- **6.** When a gas is compressed adiabatically and reversibly, the final temperature is-
 - (1) Higher than the initial temperature
 - (2) Lower than the initial temperature
 - (3) The same as initial temperature
 - (4) Dependent upon the rate of compression

- 7. A gas $\left(C_{v,m} = \frac{5}{2}R\right)$ behaving ideally was allowed to expand reversibly and adiabatically from 1 litre to 32 litre. It's initial temperature was 327°C. The molar enthalpy change (in J/mole) for the process is :-
 - (1) -1125 R
- (2) 575 R
- (3) -1575 R
- (4) None of these
- 8. Two moles of an ideal gas ($C_v = \frac{5}{2}R$) was compressed adiabatically against constant pressure of 2 atm. which was initially at 350 K and 1 atm pressure. The work involve in the process is equal to?
 - (1) 250 R
- (2) 300 R
- (3) 400 R
- (4) 500 R
- 9. What is the net work done when 1 mole of monoatomic ideal gas undergoes in a process described by 1, 2, 3, 4 in given V-T graph

Use : R = 2cal/mole K

ln 2= 0.7

- (2) 660 cal
- (3) + 660 cal
- (4) + 600 cal

- 10. The heat capacity of liquid water is 75.6 J/mol.K, while the enthalpy of fusion of ice is $6.0\,\mathrm{kJ/mol}$. What is the smallest number of ice cubes at $0^\circ\mathrm{C}$, each containing 9.0 g of water, needed to cool 500 g of liquid water from $20^\circ\mathrm{C}$ to $0^\circ\mathrm{C}$?
 - (1) 1
- (2) 7
- (3) 14 (4) None of these
- **11.** Change in entropy is negative for :-
 - (1) Bromine (ℓ) \longrightarrow Bromine (g)
 - $(2) C(s) + H_2O(g) \longrightarrow CO(g) + H_2(g)$
 - (3) (3) N_2 (g, 10 atm, 298 K) $\longrightarrow N_2$ (g, 1 atm, 298K)
 - (4) Fe(at 400 K) \longrightarrow Fe(at 300 K)
- **12.** 5 mole of an ideal gas expand reversibly from a volume of 8 dm³ to 80dm³ at a temperature of 27°C. The change in entropy is:-
 - (1) 41.57 JK⁻¹
- $(2)-95.73\ JK^{\scriptscriptstyle{-1}}$
- (3) 95.73 JK⁻¹
- $(4) 41.57 \text{ JK}^{-1}$

THERMODYNAMICS & THERMOCHEMISTRY

- 13. If $\Delta H_{vaporisation}$ of substance X(ℓ) (molar mass : 30 g/mol) is 300 J/g at it's boiling point 300 K, then molar entropy change for reversible condensation process is :-
 - (1) 30 J/mol.K
- (2) -300 J/mol.K
- (3) -30 J/mol.K
- (4) None of these
- - $H_2 + Cl_2 \longrightarrow 2HCl$ is :
 - $(1) \ 30 \ JK^{-1} \ mol^{-1}$
- (2) 40 JK⁻¹ mol⁻¹
- (3) 60 JK⁻¹ mol⁻¹
- (4) 20 JK⁻¹ mol⁻¹
- **15.** What can be concluded about the values of ΔH and ΔS from this graph?
 - (1) $\Delta H > 0$, $\Delta S > 0$
 - (2) $\Delta H > 0$, $\Delta S < 0$
 - (3) $\Delta H < 0$, $\Delta S > 0$
 - (4) $\Delta H < 0$, $\Delta S < 0$
- +100 100 +500 100 200 300 400 500 Temperature. K
- **16.** What is the free energy change (ΔG) when 1.0 mole of water at 100°C and 1 atm pressure is converted into steam at 100°C and 1 atm pressure?
 - (1) 80 cal
- (2) 540 cal
- (3) 620 cal
- (4) zero
- 17. For a reaction at 25°C enthalpy change (ΔH) and entropy change (ΔS) are -11.7×10^3 J mol⁻¹ and -105 J mol⁻¹ K⁻¹ respectively. The reaction is :
 - (1) Spontaneous
- (2) Non spontaneous
- (3) At equilibrium
- (4) Can't say anything
- **18.** For hypothetical reversible reaction,

$$\frac{1}{2} A_{2}(g) + \frac{3}{2} B_{2}(g) \longrightarrow AB_{3}(g) ; \Delta H = -20 \text{ KJ}$$

if standard entropies of A_2 , B_2 and AB_3 are $\frac{60}{40}$, 40 and $50\,\mathrm{JK^{-1}}$ mole⁻¹ respectively. The above reaction will be in equilibrium at the temperature :-

- (1) 400 K
- (2) 500 K
- (3) 250 K
- (4) 200 K
- $\textbf{19.} \quad \text{For the hypothetical reaction} \; ,$

$$A_2(g) + B_2(g) \rightleftharpoons 2AB(g)$$

 $\Delta_{_{\! r}}G$ and $\Delta_{_{\! r}}S$ are 20 kJ/mole and -20 JK $^{\! -1}$ mol $^{\! -1}$ respectively at 200 K.

If $\Delta_{\!_{p}} C_{\!_{p}}$ is $20~JK^{\!-1}~mol^{\!-1}$ then $\Delta_{\!_{p}} H$ at 400~K is :-

- (1) 20 kJ/mole
- (2) 7.98 kJ/mole
- (3) 28 kJ/mole
- (4) None of these

- **20.** The value of ΔG_f° of gaseous mercury is 31 KJ/mole. At what total external pressure mercury start 1boiling at 25°C. [R = 8.3 J/K mole]
 - $(1) 10^{-5.44}$
- (2) $10^{-12.5}$
- $(3) 10^{-6.52}$
- $(4) 10^{-3.12}$
- **21.** Which of the following equations represents a reaction that provides the heat of formation of CH₃Cl?
 - (1) $C(s) + HCl(g) + H_2(g) \rightarrow CH_3Cl(g)$
 - (2) $C(s) + 3/2 H_2(g) + 1/2 Cl_2(g) \rightarrow CH_3Cl(g)$
 - (3) $C(s) + 3 H(g) + Cl(g) \rightarrow CH_3Cl(g)$
 - (4) $CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$
- 22. Use the given standard enthalpies of formation to determine the heat of reaction of the following reaction:

$$TiCl_4(g) + 2H_2O(g) \rightarrow TiO_2(g) + 4HCl(g)$$

$$\Delta H_f^{\circ}$$
 TiCl₄(g) = -763.2 kJ/mole

$$\Delta H_{f}^{\circ} \text{ TiO}_{2}(g) = -944.7 \text{ kJ/mole}$$

$$\Delta H_{f}^{\circ} H_{2}O(g) = -241.8 \text{ kJ/mole}$$

$$\Delta H_{f}^{\circ} HCl(g) = -92.3 \text{ kJ/mole}$$

- (1) 278.1
- (2) + 369.2
- (3) + 67.1
- (4) 67.1
- **23.** $2NO_2(g) \rightarrow N_2O_4(g)$

 $\Delta U_{f}^{\circ} [N_{2}O_{4}(g)] = 2kcal/ mole$

and $\Delta U_{\rm reaction}^o$ = -16 kcal /mol then calculate $\Delta H_{\rm formation}^o$ of NO_2 at $727^{\circ}C$

- (1) 9 kcal /mol
- (2) 4.5 kcal /mol
- (3) 8 kcal /mol
- (4) 10 kcal /mol
- **24.** The reaction $CH_4(g) + Cl_2(g) \longrightarrow CH_3Cl(g) + HCl(g)$ has $\Delta H = -25$ kCal.

Bond	Bond Enthalpy kCal					
$\epsilon_{\scriptscriptstyle C-Cl}$	84					
$\epsilon_{ ext{HCl}}$	103					
ϵ_{CH}	X					
$\epsilon_{\scriptscriptstyle ext{ClCl}}$	y					
x : y = 9 : 5						

From the given data, what is the bond enthalpy of Cl—Cl bond

- (1) 70 kCal
- (2) 80 kCal
- (3) 67.75 kCal
- (4) 57.75 kCal

25. The enthalpy changes of the following reactions at 27°C are

$$\begin{split} \text{Na(s)} + \frac{1}{2} \, \text{Cl}_2 \, (\text{g}) &\longrightarrow \text{NaCl (s)} : \\ & \Delta_r H = -411 \, \, \text{kJ/mol} \\ H_2(\text{g}) + \text{S (s)} + 2\text{O}_2 \, (\text{g}) &\longrightarrow H_2 \text{SO}_4 \, (\text{J}) : \\ & \Delta_r H = -811 \, \, \text{kJ/mol} \\ 2\text{Na(s)} + \text{S(s)} + 2\text{O}_2 \, (\text{g}) &\longrightarrow \text{Na}_2 \text{SO}_4 \, (\text{s}) : \\ & \Delta_r H = -1382 \, \, \text{kJ/mol} \end{split}$$

$$\frac{1}{2}$$
 H₂(g) + $\frac{1}{2}$ Cl₂(g) \longrightarrow HCl (g) :

$$\Delta_{\rm r}H = -92 \, {\rm kJ/mol};$$

from these data, the heat change of reaction at constant volume (in kJ/mol) at $27^{\circ}C$ for the process (R = 8.3 J/K-mol)

$$2NaCl(s) + H_2SO_4(I) \longrightarrow Na_2SO_4(s) + 2HCl(g)$$
 is

(1)67

- (2)62.02
- (3)71.98
- (4) None
- **26.** Ethanol can undergoes decomposition to form two sets of products

$$C_2H_3OH(g) \rightarrow C_2H_4(g) + H_2O(g)$$
 $\Delta H^\circ = 45.54 \text{ kJ}$
 $C_2H_3OH(g) \rightarrow CH_3CHO(g) + H_2(g)$ $\Delta H^\circ = 68.91 \text{ kJ}$

if the molar ratio of C_2H_4 to CH_3CHO is 8:1 in a set of product gases, then the enthalpy involved in the decomposition of 1 mole of ethano/is:

- (1) 65.98 kJ
- (2) 48.137 kJ
- (3) 48.46 kJ
- (4) 57.22 kJ
- **27.** $\Delta H_{\rm f}^0$ of water is 285.8 kJ mol⁻¹. If enthalpy of neutralisation of monoacid strong base is –57.3 kJ mol⁻¹, $\Delta H_{\rm f}^0$ of OH⁻ ion will be
 - $(1) 228.5 \text{ kJ mol}^{-1}$
- (2) 228.5 kJ mol⁻¹
- (3) 114.25 kJ mol⁻¹
- (4) -114.25 kJ mol⁻¹

- **28.** The molar heat capacities at constant pressure (assume constant with respect to temperature) of A, B and C are in ratio of $\mathbf{1.5}:\mathbf{3.0}:\mathbf{2.0}$. If enthalpy change for the exothermic reaction $A+2B\longrightarrow 3C$ at $300~\mathrm{Kis}-10~\mathrm{kJ/mol}\&~C_\mathrm{p,m}$ (2) is $300~\mathrm{J/mol}$ then enthalpy change at $310~\mathrm{K}$ is
 - (1) 8.5 kJ/mol
- (2) 8.5 kJ/mol
- (3) 11.5 kJ/mol
- (4) none of these
- **29.** Reactions involving gold have been of particular interest to a chemist . Consider the following reactions,

$$Au(OH)_3 + 4 HCl \longrightarrow HAuCl_4 + 3 H_2O$$
,

$$\Delta H = -28 \text{ kCal}$$

$$Au(OH)_3 + 4 HBr \longrightarrow HAuBr_4 + 3 H_2O$$
,

$$\Delta H = -36.8 \text{ kCal}$$

In an experiment there was an absorption of $0.44 \, kCal$ when one mole of $HAuBr_4$ was mixed with 4 moles of HCl. What is the percentage conversion of $HAuBr_4$ into $HAuCl_4$?

- (1) 0.5 %
- (2) 0.6 %

(3) 5 %

- (4) 50 %
- **30.** Hydrazine, a component of rocket fuel, undergoes combustion to yield N₂ and H₂O.

$$N_2H_4(\ell) + O_2(g) \longrightarrow N_2(g) + 2H_2O(\ell)$$

What is the enthalpy change of combustion of N_2H_4 (kJ/mole)

Given Reaction $\Delta H/kJ$

$$2NH_3(g)+3N_2O(g) \rightarrow 4N_2(g)+3H_2O(\ell)$$
 - 1011 kJ

$$N_2O(g) + 3H_2(g) \rightarrow N_2H_4(\ell) + H_2O(\ell) - 317 \text{ kJ}$$

$$4NH_3(g) + O_2(g) \rightarrow 2N_2H_4(\ell) + 2H_2O(\ell) - 286 \text{ kJ}$$

$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(\ell)$$
 - 285 kJ

- (1) 620.5
- (2) 622.75
- (3) 1167.5
- (4) + 622.75

				ANSWER KEY			Exercise-I			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	1	2	3	4	3	1	3	4	3	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	3	3	1	1	4	2	2	1	1
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	2	4	3	4	2	2	1	3	3	1